AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI &

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation, Deemed to be University, Salem, Tamil Nadu, India)

(AICTE APPROVED AND NAAC ACCREDITED)

Faculty of Engineering and Technology

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

2017 REGULATION

Programme:

B.E / B.Tech - COMPUTER SCIENCE AND ENGINEERING (CYBER SECURITY) Full Time (4 Years)

STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS) CURRICULUM AND SYLLABUS

(Semester I to VIII)

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYNAOOR 60314

VMKV ENGINEERING COLLEGE, SALEM 636 308

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION

"To establish a centre of excellence in computer education and research and to create a platform for professionals thereby reaching a pinnacle of glory"

MISSION

Computer Science and Engineering is committed

- To develop innovative, competent and quality computer engineers by imparting the state-of the –art technology
- To enrich the knowledge of students through value based education
- To develop consultancy activities for industrial sectors
- To endeavour for constant up gradation of technical expertise of students to cater to the needs of the society

• **PROGRAMME OUTCOMES: (POS)**

- **PO1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2. Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4. Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

- **PO5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6. The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Sl. No.	Category of Courses	Credits to be earned Min.
	A. Foundation Courses (FC)	65
01	i. Humanities and Sciences (English and Management Courses)	12
01	ii. Basic Sciences (Maths, Physics and Chemistry Courses)	24
	iii. Engineering Sciences (Basic Engineering Courses)	29
02	B. Core courses (CC) relevant to the chosen Programme of study.	49
	C. Elective Courses (EC)	30
03	i. Programme Specific (Class Room or Online)	18
	ii. Open Elective (Class Room or Online)	12
	D. Project + Internship + Industry Electives (P + I + I)	15
04	i. Project	9
04	ii. Internship	3
	iii. Industry Supported Courses	3
	**E. Employability Enhancement Courses + Co - Curricular Courses + Extra Curricular Courses	Non Credit
05	i. Employability Enhancement Courses (Personality Development Training, Participation in Seminars, Professional Practices, Summer Project, Case Study etc.)	Non Credit
	ii. Co - Curricular Courses (NCC, NSS, Sports, Games, Drills and Physical Exercises)	Non Credit
	iii. Extra Curricular Courses	Non Credit
	Minimum Credits to be earned	159
CGPA	Iandatory, Credits would be mentioned in Mark sheets but not incl A Calculations. For overall CGPA calculations, a student has to ear redits in Categories A to D.	

	(i) HUM	ANITIES AND SCIENCES (ENG	GLISH AND MANAG	EMENT SUBJE	ECTS) -	CREDI	TS (12)		
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGOR Y	L	Т	Р	С	PREREQUIS TE
1.	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL
2.	17EGHS02	ENGLISH LANGUAGE LAB	ENGLISH	FC (HSS)	0	0	4	2	NIL
3.	17EGHS81	BUSINESS ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL
1.	17MBHS01	ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
5.	17EGHS82	PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT	ENGLISH	FC (HSS)	0	0	2	1	NIL
6	17YMHS82	YOGA AND MEDITATION	PHYSICAL EDUCATION	FC (HSS)	0	0	4	2	NIL
		(iii) BASIC SCIENCES (BASIC ENGINEERIN	NG COURSES)	- CREI	DITS (24)		
1.	17MABS01	ENGINEERING MATHEMATICS	MATHEMATICS	FC (BS)	2	2	0	3	NIL
2.	17MABS09	MATHEMATICS FOR COMPUTER ENGINEERS	MATHEMATICS	FC (BS)	2	2	0	3	NIL
3.	17MABS14	NUMERICAL METHODS AND NUMBER THEORY	MATHEMATICS	FC (BS)	2	2	0	3	NIL
4.	17MABS15	PROBABILITY AND QUEUING THEORY	MATHEMATCS	FC (BS)	2	2	0	3	NIL
5.	17MABS22	MATHEMATICS FOR MACHINE LEARNING	MATHEMATCS	FC (BS)	2	2	0	3	ENGINEERIN G MATHEMAT CS
5.	17MABS23	.MATHEMATICS FOR DATA SCIENCE	MATHEMATCS	FC (BS)	2	2	0	3	ENGINEERIN G MATHEMAT CS
7.	17MABS24	STATISTICAL FOUNDATION	MATHEMATCS	FC (BS)	2	2	0	3	ENGINEERIN G MATHEMAT CS
8.	17PCBS02	PHYSICAL SCIENCES PART A. ENGINEERING PHYSICS PART B. ENGINEERING CHEMISTRY	PHYSICS & CHEMISTRY	FC (BS)	4	0	0	4	NIL
9.	17PHBS05	SMART MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL
10.	17PCBS81	PHYSICAL SCIENCES LAB PART A. REAL AND VIRTUAL LAB IN PHYSICS PART B. ENGINEERING CHEMISTRY LAB	PHYSICS & CHEMISTRY	FC (BS)	0	0	4	2	NIL

		BASICS OF ELECTRICAL							
1.	17EEES03	AND ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	4	0	0	4	NIL
2.	17CMES02	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECH	FC(ES)	4	0	0	4	NIL
3.	17CSES01	ESSENTIALS OF COMPUTING	CSE	FC(ES)	3	0	0	3	NIL
4.	17CSES05	PROGRAMMING IN PYTHON	CSE	FC(ES)	3	0	0	3	NIL
5.	17CSES83	PROGRAMMING IN PYTHON LAB	CSE	FC(ES)	0	0	4	2	NIL
6.	17EEES82	ENGINEERING SKILLS PRACTICES LAB A. BASIC ELECTRICAL ENGINEERING B. BASIC ELECTRONICS ENGINEERING	EEE & ECE	FC(ES)	0	0	4	2	NIL
7.	17CMES81	ENGINEERING SKILLS PRACTICE LAB A.BASIC CIVIL ENGINEERING B.BASIC MECHANICAL ENGINEERING	CIVIL & MECH	FC(ES)	0	0	4	2	NIL
8.	17MEES84	ENGINEERING GRAPHICS (THEORY + PRACTICE)	MECH	FC(ES)	1	0	4	3	NIL
9.	17CSES06	PROGRAMMING IN C	CSE	FC(ES)	3	0	0	3	NIL
10.	17CSES85	PROGRAMMING IN C LAB	CSE	FC(ES)	0	0	4	2	NIL

CURRICULUM

B.E / B.Tech. – COMPUTER SCIENCE AND ENGINEERING (CYBER SECURITY)

SEMESTER I TO VIII

	CON	MPUTER SCIENCE	B.E/ B.TECH AND ENGINH EMESTER I T	ERING (CY	BEI	R SE(CURIT	ΓY)	
C	ATEGORY B	– CORE COURSES RE			AMN	1E -	CRED	ITS (4	49)
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	C	PREREQUISITE
1.	17CSCC01	DATA STRUCTURES	CSE	СС	3	0	4	3	NIL
2.	17CSCC20	DATA STRUCTURES LAB	CSE	CC	0	0	4	2	NIL
3.	17CSCC04	COMPUTER ARCHITECTURE	CSE	CC	3	0	0	3	NIL
4.	17CSCC02	OBJECT ORIENTED PROGRAMMING	CSE	CC	3	0	4	3	NIL
5.	17CSCC21	OBJECT ORIENTED PROGRAMMING lab							
6.	17CSCC06	DESIGN AND ANALYSIS OF ALGORITHM	CSE	CC	3	0	4	3	DATA STRUCTURES
7.	17CSCC23	ALGORITHM LAB	CSE	CC	0	0	4	2	DATA STRUCTURES
8.	17AICC01	PROBLEM SOLVING USING PYTHON PROGRAMMING (Theory + Practice)	CSE	CC	3	0	2	4	NIL
9.	17CSCC03	DATABASE MANAGEMENT SYSTEM	CSE	CC	3	0	4	3	NIL
10.	17CSCC22	DATABASE MANAGEMENT SYSTEM LAB	CSE	CC	0	0	4	2	NIL
11.	17CSCC09	JAVA PROGRAMING	CSE	СС	3	0	4	3	NIL
12.	17CSCC26	JAVA PROGRAMING LAB	CSE	CC	0	0	4	2	NIL
13.	17CSCC07	OPERATING SYSTEM	CSE	CC	3	0	4	3	NIL
14.	17CSCC24	OPERATING SYSTEM LAB	CSE	CC	0	0	4	2	NIL
15.	17CSCC08	COMPUTER NETWORKS	CSE	CC	3	0	0	3	NIL
16.	17CSCC25	COMPUTER NETWORKS LAB	CSE	CC	0	0	4	2	NIL
17.	17CSCC18	RICH INTERNET APPLICATION	CSE	CC	3	0	0	3	JAVA PROGRAMMING
18.	17CSCC31	RICH INTERNET APPLICATION DEVELOPMENT LAB	CSE	CC	0	0	4	2	JAVA PROGRAMMING LAB
19.	17CSCC16	CLOUD COMPUTING	CSE	CC	3	0	0	3	COMPUTER NETWORKS
20.	17AICC02	INFORMATION SECURITY	CSE	CC	3	0	0	3	COMPUTER NETWORKS
21.	17CSCC15	C# AND .NET APPLICATION DEVELOPMENT	CSE	CC	3	0	0	3	JAVA PROGRAMMING
22.	17CSCC30	C# AND .NET APPLICATION DEVELOPMENT lab	CSE	CC	3	0	0	3	JAVA PROGRAMMING
23.	17CYCC01	UNIX INTERNALS	CSE	CC	3	0	0	3	NIL
24.	17CSCC19	INTERNET OF THINGS	CSE	CC	3	0	0	3	NIL
25.	17CYCC02	INTRODUCTION TO ARTIFICIAL INTELLIGENCE	CSE	CC	3	0	0	3	NIL

26.	17CSCC17	CYBER SECURITY	CSE	CC	3	0	0	3	INFORMATION SECURITY
27.	17СҮСС03	NETWORK SECURITY AND MANAGEMENT	CSE	CC	3	0	0	3	COMPUTER NETWORKS
28.	17CYCC04	NETWORK SECURITY LAB	CSE	CC	0	0	4	2	COMPUTER NETWORKS
29.	17CYCC05	ETHICAL HACKING	CSE	CC	3	0	0	3	CYBER SECURITY
30.	17CYCC06	ETHICAL HACKING LAB	CSE	CC	0	0	4	2	CYBER SECURITY
31.	17CSCC13	DATA WAREHOUSING AND DATA MINING	CSE	CC	3	0	0	3	DATABASE MANAGEMENT SYSTEM
32.	17AICC09	FOUNDATION OF DATA SCIENCE	CSE	CC	3	0	0	3	NIL
33.	17AICC10	BIG DATA ANALYTICS	CSE	CC	3	0	0	3	DATABASE MANAGEMENT SYSTEM
34.	17AICC11	BIG DATA ANALYTICS LAB	CSE	CC	0	0	4	2	DATA WAREHOUSING AND DATA MINING
35.	17AICC12	DATA ANALYTICS USING PYTHON	CSE	CC	3	0	4	5	PROGRAMMING IN PYTHON

	C	OMPUTER SCIENCE	B.E/ B.TEC AND ENGINI EMESTER I	EERING (CY	(BE)	R SE(CURI	ΓY)	
		CATEGORY C – EI			CRI	EDIT	S (30)	
		(i) PROGRAMME SPEC	IFIC (CLASS ROO	M OR ONLINE)	- CR	EDITS	(18)		
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1.	17CYEC01	DIGITAL FORENSICS	CSE	EC(PS)	3	0	0	4	CYBER SECURITY
2.	17CYEC02	CYBER CRIMES AND LAWS	CSE	EC(PS)	3	0	2	3	CYBER SECURITY
3.	17CYEC03	INTRUSION DETECTION AND PREVENTION SYSTEM	CSE	EC(PS)	3	0	0	4	NETWORK SECURITY AND MANAGEMENT
4.	17CYEC04	PENETRATION TESTING	CSE	EC(PS)	3	0	2	4	ETHICAL HACKING
5.	17CYEC05	MOBILE COMMUNICATION SECURITY	CSE	EC(PS)	3	0	2	4	CYBER SECURITY
6.	17CYEC06	BIGDATA SECURITY	CSE	EC(PS)	3	0	0	3	BIG DATA ANALYTICS
7.	17CYEC07	CLOUD COMPUTING SECURITY	CSE	EC(PS)	3	0	2	4	DATA WAREHOUSING AND DATA MINING
8.	17CYEC08	DATA VISUALIZATION TECHNIQUES	CSE	EC(PS)	3	0	0	3	CLOUD COMPUTING
9.	17CYEC09	DATA CENTRE VIRTUALIZATION	CSE	EC(PS)	3	0	0	3	DATABASE MANAGEMENT SYSTEM
10.	17CYEC10	DISTRIBUTED COMPUTING	CSE	EC(PS)	3	0	0	3	COMPUTER NETWORKS
11.	17CYEC11	AGILE METHODOLOGIES	CSE	EC(PS)	3	0	2	4	NIL
12.	17CYEC12	BIO METRICS	CSE	EC(PS)	3	0	0	3	INFORMATION SECURITY
13.	17CYEC13	OPEN SOURCE SYSTEMS	CSE	EC(PS)	3	0	0	3	NIL
14.	17CYEC14	KNOWLEDGE BASED DECISION SUPPORT SYSTEM	CSE	EC(PS)	3	0	0	3	NIL
15.	17CYEC15	INFORMATION RETRIEVAL TECHNIQUES	CSE	EC(PS)	3	0	0	3	DATA MINING AND DATA WAREHOUSING
16.	17CYEC16	IT INFRASTRUCTURE MANAGEMENT	CSE	EC(PS)	3	0	0	3	NIL
17.	17CYEC17	VIRTUALIZATION TECHNIQUES	CSE	EC(PS)	3	0	0	3	NIL
18.	17CYEC18	USER INTERFACE DESIGN	CSE	EC(PS)	3	0	0	3	NIL
19.	17CYEC19	OPTIMIZATION TECHNIQUES	CSE	EC(PS)	3	0	0	3	NIL
20.	17CYEC20	MACHINE LEARNING DATA ANALYTICS	CSE CSE	EC(PS) EC(PS)	3	0	0	3	ARTIFICIAL INTELLGENCE
	17CYEC21	PROBLEM	CSE	EC(PS) EC(PS)	3	0	0	3	NIL
22.	17CYEC22	IDENTIFICATION AND DESIGN THINKING	COE		3	0	0	3	NIL

			B.E/ B.TECH						
	CO	MPUTER SCIENCE SI	AND ENGINE EMESTER I T		(BEI	R SEC	CURI	ΓY)	
	(ii) OPEN ELECTIVI	E CREDITS((CLASS RO	OM	OR	ONL	INE)	- (12)
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1.	17MBHS04	TOTAL QUALITY MANAGEMENT	MANAGEMENT	EC(OE)	3	0	0	3	NIL
2.	17MBHS03	ENGINEERING MANAGEMENT AND ETHICS	MANAGEMENT	EC(OE)	3	0	0	3	NIL
3.	17MBHS05	MARKETING TECHNIQUES FOR ENGINEERS	MANAGEMENT	EC(OE)	3	0	0	3	NIL
4.	17CVEC07	DISASTER MITIGATION AND MANAGEMENT	CIVIL	EC(OE)	3	0	0	3	NIL
5.	17EEEC22	SCADA	EEE	EC(OE)	3	0	0	3	NIL
6.	17EEEC03	COMPUTER AIDED DESIGN OF ELECTRICAL APPARATUS	EEE	EC(OE)	3	0	0	3	NIL
7.	17EEEC21	NON CONVENTIONAL ENERGY SOURCES	EEE	EC(OE)	3	0	0	3	NIL
8.	17MEPI04	NON DESTRUCTIVE TESTING	MECHANICAL	EC(OE)	3	0	0	3	NIL
9.	17MESE17	MODERN MANUFACTURING METHODS	MECHANICAL	EC(OE)	3	0	0	3	NIL
10.	17ECCC07	MICROCONTROLLE RS & ITS APPLICATIONS	ECE	EC(OE)	3	0	0	3	NIL
11.	17MBHS02	FINANCE AND ACCOUNTING FOR ENGINEERS	MANAGEMENT	EC(OE)	3	0	0	3	NIL
12.	17MBHS09	INTELLECTUAL PROPERTY RIGHTS AND ALTERNATE DISPUTE RESOLUTION	MANAGEMENT	EC(OE)	3	0	0	3	NIL
13.	17ATEC14	COMPUTER CONTROLLED VEHICLE SYSTEMS	AUTOMOBILE	EC(OE)	3	0	0	3	NIL
14.	17CVSE55	REMOTE SENSING AND GIS FOR ENVIRONMENTAL APPLICATION	CIVIL	EC(OE)	3	0	0	3	NIL
15.	17CVEC03	GEOGRAPHICAL INFORMATION SYSTEM	CIVIL	EC(OE)	3	0	0	3	NIL
16.	17CVSE02	ENTERPRISE WIDE INFORMATION SYSTEMS	CIVIL	EC(OE)	3	0	0	3	NIL
17.	17CVSE47	ICT BASED CITY AND INFRASTRUCTURE PLANNING	CIVIL	EC(OE)	3	0	0	3	Nil
18.	17EESE03	ARTIFICIAL INTELLIGENCE APPLICATION	EEE	EC(OE)	3	0	0	3	NIL
19.	17BMCC03	BIOSENSORS AND TRANSDUCERS	BME	EC(OE)	3	0	0	3	NIL
20.	17BMEC06	APPLIED NEURAL NETWORKS AND	BME	EC(OE)	3	0	0	3	NIL

		FUZZY LOGICSYSTEMS							
21.	17BMSE17	IN MEDICINE BRAIN COMPUTER INTERFACE	BME	EC(OE)	3	0	0	3	NIL
22.	17BMSE18	ROBOTICS & AUTOMATION IN MEDICINE	BME	EC(OE)	3	0	0	3	NIL
23.	17ECCC04	SIGNALS AND SYSTEMS	ECE	EC(OE)	3	0	0	3	NIL
24.	17ECCC01	SEMICONDUCTOR DEVICES	ECE	EC(OE)	3	0	0	3	NIL
25.	17ECCC15	ANALOG & DIGITAL COMMUNICATION	ECE	EC(OE)	3	0	0	3	NIL
26.	17EEEC20	MATHEMATICAL MODELLING AND SIMULATION	EEE	EC(OE)	3	0	0	3	NIL
27.	17BMSE16	WEARABLE TECHNOLOGY	BME	BM(OE)	3	0	0	3	NIL
28.	17ECSE21	WIRELESS SENSOR NETWORKS AND IOT	ECE	EC(OE)	3	0	0	3	NIL
29.	17ECSE22	WIRELESS TECHNOLOGIES FOR IOT	ECE	EC(OE)	3	0	0	3	NIL
30.	17ECSE07	SOFTWARE TECHNOLOGY FOR EMBEDDED SYSTEMS	ECE	EC(OE)	3	0	0	3	NIL
31.	17MECC12	COMPUTER INTEGRATED MANUFACTURING	MECH	EC(OE)	3	0	0	3	NIL
32.	17BTSE05	INDUSTRIAL WASTE MANAGEMENT	BTE	EC(OE)	3	0	0	3	NIL
33.	17BMEC04	MEMS AND ITS BIOMEDICAL APPLICATIONS	BME	EC(OE)	3	0	0	3	NIL
34.	17CVEC14	AIR POLLUTION MANAGEMENT	CIVIL	EC(OE)	3	0	0	3	NIL
35.	17BTPI05	INDUSTRIAL BIOSAFETY	BTE	EC(OE)	3	0	0	3	NIL
36.	17BTEC29	GREEN BUILDING AND SUSTAINABLE ENVIRONMENT	BTE	EC(OE)	3	0	0	3	NIL

			B.E/ B.TEC	H.								
	COM	IPUTER SCIENCE			CYI	BER	SECU	URIT	TY)			
	SEMESTER I TO VIII											
	CATEGORY D – PROJECT + INTERNSHIP + INDUSTRY ELECTIVES (P + I + I)- CDEDITS (15)											
	CREDITS (15)											
		(i) PRO	JECT - CREI	DITS (9)								
		(i) INTERNSHIP +	INDUSTRY E	LECTIVES	5 - C	RED	ITS (6	5)				
SL. NO	SL. CODE COURSE OFFERING CATEGO L T P C PREREQUISIT											
1.	17CSPI01	PROJECT WORK	CSE	PI	0	0	18	9	NIL			
2.	17CSPI02	INTERNSHIP	CSE	PI	0	0	0	3	NIL			
3.	17CSPI03	BUSINESS INTELLIGENCE AND ITS APPLICATIONS	CSE	PI	3	0	0	3	NIL			
4.	17CSPI04	BUILDING ENTERPRISE APPLICATIONS	CSE	PI	3	0	0	3	NIL			
5.	17CSPI05	INTERNET AND WEB TECHNOLOGY	CSE	PI	3	0	0	3	NIL			
6.	17CSPI06	LEARNING IT ESSENTIALS BY DOING	CSE	PI	3	0	0	3	NIL			
7.	17CSPI07	ESSENTIALS OF INFORMATION TECHNOLOGY	CSE	Ы	3	0	0	3	NIL			
8.	17CSPI08	INTRODUCTION TO MAIN FRAMES	CSE	PI	3	0	0	3	NIL			
9.	17CSPI09	MOBILE APPLICATION DEVELOPMENT	CSE	PI	3	0	0	3	NIL			

	I	B.E / B.TECH. – ARTIFICI	AL INTELLIGENCI	E & DATA SCIE	NCE - S	EMEST	ER I TO) VIII			
		EMPLOYABILITY AND EXTRA CURR Y, CREDITS WOUL FOI	ICULAR COUR	SES (EEC)** ED IN MARI	- CRE	DITS ((9)				
		(i) EMPLOYABIL		*	SES (E	EC) (3)				
SL. NO	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE		
1.	17APEE01	PERSONALITY SKILLS DEVELOPMENT - I	MATHS	EE	2 WEEF	KS OF TR.	AINING	1	NIL		
2.	17APEE02	PERSONALITY SKILLS DEVELOPMENT - II	ENGLISH & MANAGEMENT	EE	2 WEEF	KS OF TR.	AINING	1	NIL		
3.	17CSEE01	APPLICATION SOFTWARE AND SYSTEM SOFTWARE INSTALLATION	CSE	EE	3	0	0	3	NIL		
4.	17CSEE02	WEB DESIGNING	CSE	EE	3	0	0	3	NIL		
5.	17CSEE03	DIGITAL MARKETING	CSE	EE	3	0	0	3	NIL		
6.	17CSEE04	MOBILE APPLICATION DEVELOPER	CSE	EE	3	0	0	3	NIL		
		(ii) CO	- CURRICULAI	R COURSES ((CCC)	(3)					
1.	17APEE03	NCC	NCC	EE	2 WEE TRAIN CAMP	NING IN	NCC	1	NIL		
2.	17APEE04	NSS	NSS	EE		KS OF S S CAMP	OCIAL	1	NIL		
3.	17APEE05	SPORTS AND GAMES (INTER – UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE						1	NIL
4.	17APEE06	SPORTS AND GAMES (INTRA- UNIVERSITY LEVEL)	PHYSICAL EDUCATION	EE				2	NIL		
5.	17APEE07	SPORTS AND GAMES (STATE AND NATIONAL LEVELS)	PHYSICAL EDUCATION	EE				2	NIL		
	(iii) EX	TRA CURRICULAR	COURSES (ECC	c) - (MOOC	C/SW	AYAN	M / N	PTE	L) (3)		
1.	17CSEE05	EXTRA CURRICULAR COURSES – I		EE					NIL		
2.	17CSEE06	EXTRA CURRICULAR COURSES – II		EE					NIL		
3.	17CSEE07	EXTRA CURRICULAR COURSES – III		EE					NIL		
4.	17CSEE08	EXTRA CURRICULAR COURSES -IV		EE					NIL		
5.	17CSEE09	EXTRA CURRICULAR COURSES – V		EE					NIL		
6.	17CSEE10	EXTRA CURRICULAR COURSES – VI		EE					NIL		

	B.E/ B.TECH. COMPUTER SCIENCE AND ENGINEERING – CYBER SECURITY SEMESTER I TO VIII											
		CATEGORY	YF - MANDAT	ORY COURSI	ES -	Non	Credit					
SL. NO	SL. NO CODE COURSE OFFERING DEPT. CATEGORY L T P C PREREQUISITE											
1.	17CHBS01	ENVIROMENTAL SCIENCES	CHEMISTRY	MC	1	-	_	0	NIL			
2.	ESSENCE OF INDIAN MC											

SEMESTER	SINEERING – CYBER SECURITY
INDUCTION PROGRAM (MANDATORY)	3 Weeks Duration
Induction program for students to be offered right at the start of the first year.	 Physical activity Creative Arts Universal Human Values Literary Proficiency Modules Lectures by Eminent People Visits to local Areas Familiarization to Dept./Branch & Innovations

17EGH	IS01 TECHNICAL ENGLISH	Category	L	Т	Р	Credit
		HSS	3	0	2	4
communi outcome	BLE I English is a life skill course necessary for all students of Engineerin cation skills in English, essential for understanding and expressing the of the course is to help the students acquire the language skills of I necy in English language and thereby making the students competent and	ideas of diffe Listening, Sp	erent j peakin	profess 1g, Rea	ional Iding	context. The and Writing
PRERE	QUISITE: NIL					
COURS	E OBJECTIVES					
1 ′	Γο enable students to develop LSRW skills in English. (Listening, Speak	ing, Reading	g, and	Writin	g.)	
2 7	Γο make them to become effective communicators					
3 ′	To ensure that learners use Electronic media materials for developing lan	guage				
4 ′	Γο aid the students with employability skills.					
5 7	Γο motivate students continuously to use English language					
6 ′	Fo develop the students communication skills in formal and informal situ	ations				
COURS	E OUTCOMES					
On the su	accessful completion of the course, students will be able to					
CO1. Lis	ten, remember and respond to others in differentscenario	Ren	nembe	er		
	derstand and speak fluently and correctly with correct pronunciation in situation.	Und	lerstar	nd		

CO3. To make the students experts in professional writing	Apply
CO4 To make the students in proficient technical communicator	Apply
CO5. To make the students good communicators at the work place and to be theoretically strong.	Apply
CO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific field	Analyze
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC	COUTCOMES

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	Μ			Μ	Μ	S		L	S	L	S	S	S	Μ
CO2		Μ		L	Μ	Μ	S		L	S	S	S	S		
CO3		L	L	Μ				L	L	Μ	S	S	S	S	Μ
CO4		Μ				Μ	Μ		L	S		S	S		
CO5	Μ	Μ		Μ	Μ	Μ	S	Μ	L	S	Μ	S	S	S	Μ
CO6	Μ		Μ			Μ					S	Μ	S	S	Μ
S- Stro	ng; M-N	Medium	i; L-Lov	W											

LISTENING

SYLLABUS

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

SPEAKING

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homonyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.

REPORTING WRITING

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

READING

Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

WRITING

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae.

TEXT BOOK

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford UniversityPress
- 3. Grammar Builder- I, II, III, and Cambridge UniversityPress.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

CourseDesigners:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

17EG	HS02		F	NGLI	SH LA	NGU	AGEI	AB		Ca	ategory	y L	Т	P Ci	edit
1/150	11.502					muu		μημ			HSS	0	0	4	2
PREA	MBLE									1		I	II	1	
												a platforn		rning, pra	cticing
_			-	ills thr	ough ir	nteracti	ve less	ons an	d comr	nunicati	ve mod	le of teac	hing.		
PRER	REQUI	SITE:	NIL												
COU	RSE O	BJECT	FIVES												
1	To un	derstar	nd com	munica	ation nu	uisance	es in the	e corpo	orate se	ctor.					
2	To un	derstar	d the r	ole of	mother	tongu	e in sec	cond la	nguage	elearnin	g and to	o avoid ir	nterferer	ce of mo	ther
	tongue	•													
3	To co	mmun	icate et	ffective	ely thro	ough di	fferent	activit	ies						
4	To un	dersta	nd and	apply	the tele	phone	etique	tte							
5								of con	nmunic	cation					
6	To in	prove	the ora	ıl skills	of the	studen	its								
	RSE O														
	e succes									1					
	Give b											Understa	nd		
	Best pe							-	speaki	ng.		Apply			
CO3.	Give be	etter jol	o oppoi	rtunitie	es in co	rporate	comp	anies				Apply			
CO4. 1	Better u	Inderst	anding	of nua	nces of	f Engli	sh lang	uage t	hrough	audio-v	isual	Apply			
experi	ence an	d grou	p activ	ities		-			•						
CO5.	Speakir	ng skill	ls with	clarity	and c	onfide	nce wh	ich in	turn er	nhances	their	Apply			
	yability														
							spoke	n and v	written	languag	e in	Apply			
	e range														
MAP	PING V	VITH	PROG	GRAM	ME O	UTCO	MES A	AND F	PROGI	RAMM	E SPE	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO3
CO1	-	S	Μ	S	-	L	-	-	S	S	М	-	-	-	S
CO2	М	-	-	-	-	-	-	-	М	S	-	М	S	М	S
CO3	М	-	-	-	-	-	-	-	-	S	-	М	S	S	S
CO4	М	-	-	-	-	-	-	-	-	Μ	-	-	Μ	S	S
CO5	М	-	-	S	-	-	-	-	-	Μ	-	-	Μ	S	S
CO6	-	М	М	-	-	-	-	-	-	Μ	-	-	М	М	S
S- Stro	ong; M-	Mediu	m; L-I	LOW										•	·

MODULE I: Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to a song and understanding- (fill in the blanks) Telephone Conversation

MODULE II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity.

MODULE III: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual.

MODULE IV: Telephone Etiquette, Dining Etiquette, Meeting Etiquette.

MODULE V: Case study of Etiquette in different scenario.

TEXT BOOKS:

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCES:

- 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford UniversityPress
- 3. Grammar Builder- I, II, III, and Cambridge UniversityPress.
- 4. Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row

Publications.,2002.

S.No.	Name of the Faculty	Designation	Department	Email ID
1	Dr.P.Saradha	Associate Professor	English / VMKVEC	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English / AVIT	Prem.english@avit.ac.in

17EG	HS81				BUSI	NESS E	ENGLI	SH			Catego	ry L	Т	P C	credit
											HSS	3	0	4	5
	MBLE	a af the		بر اور مرا م							indom A				De aliah
														nguages int fields a	
	pe to vi						Jopene	J 101 U		neement	OI KIIOW	leage in	unicici	n neius a	inu as a
	<u> </u>														
PRER	EQUIS	ITE: N	IL												
COUL	RSE OB	IFCTI	VFS												
1				nce cor	norate (ommu	nication	<u> </u>							
1	10 11	ipurt ui				ommu	neation								
2	To er	able le	arners t	o devel	op pres	entation	n skills								
2	T - 1		£ 1	- in 1-			aliat :	D		4					
3	10 0	uild coi	maenc	e in leai	rners to	use En	giish in	Busine	ess cont	ext					
4	To ma	ke ther	n exper	ts in pr	ofessio	nal writ	ing								
5	To ass	sist stud	ents un	derstan	d the ro	ole of th	inking	in all fo	orms of	commun	ication				
6	-			ith emp	loyabili	ty and	job seai	rching s	kills						
	RSE OU														
	success								to						
	Commur			<u> </u>								Jndersta	nd		
	Students wn comi							nteractio	on skills	s and con	isider A	Apply			
	Strength			U				ss conte	ext		A	Apply			
	•	-								1. 1.					
										thts and i different		Apply			
ideas	viake the	studer		alt with	pleasi	ig note	and ma	ke then	i to giv		IL F	Apply			
	Make the	em in b	etter pe	rformai	nce in tl	ne art of	f comm	unicatio	on		A	Apply			
MAPI	PING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC C		MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
CO1	Μ		L		L	S	S		Μ	S		S	Μ		
CO2		Μ	S	Μ		Μ	Μ		L	S		S	S		
CO3	L	Μ				Μ		L		S	L	Μ		S	Μ
CO4		L	Μ	M			L	M	M	S	L	M	S		
CO5 CO6		L		M M		L	L	M	L	S S		L S	M	S	M
				IV.	1			1	1				1		1

SUBJECT AND VERB AGREEMENT: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

STRESS: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

READING SKILLS: Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs – E - Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

CORPORATE COMMUNICATION: Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences -Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations

CRITICAL READING: Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

TEXT BOOK

1. English for Effective Communication - Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

1. Grammar Builder – I, II, III – Cambridge UniversityPress.

2. Technical English – Writing, Reading and Speaking – Pickett and Lester, Harper and Row

CourseDesigners:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

171	MBHS	01		ENG	INEE	RING	STAI	RTUPS	5	Categ	gory	L	Т	Р	Credit
				AND			ENEU MENT	URIAL Γ		HS	S	3	0	0	3
PREAM	IBLE:														
A startu	ip mea	ins coi	npany	initia	ted by	indivi	dual i	nnovate	or or	entrepro	eneurs t	to searc	h for	a repeat	able and
scalable	busin	ess mo	del. M	lore sp	ecifica	ully, a s	startup	is a ne	wly e	merged	busines	ss ventu	ire that	t aims to	develop
a viable	busin	ess mo	del to	meet a	a mark	etplac	e need	s or wa	nts in	an opt	imum n	nanner.			
PRERE	QUISI	TE: N	IL												
COURS	E OBJ	ECTI	VES:												
1	1. To ı	inders	tand th	e basi	cs of S	tartup	s Man	agemer	nt and	compo	nents.				
	2. To a	inalyze	e the st	tartups	fund	manag	ement	practic	es						
	3. To p	oractic	e the v	arious	kinds	of sto	cks an	d empl	oyme	nt consi	deratio	ns in st	artups		
2	4. To a	pply t	he imp	ortand	ce of ir	tellec	tual pr	operty	rights	and its	proced	ures.			
-	5. To e	explore	e the e	ntrepre	eneuria	l mino	lset an	d cultu	re.						
COURS	E OU'	ГСОМ	ES:												
After su	ccessfi	il com	pletion	of the	cours	e, stud	ents wi	ill be al	ole to						
CO1: Ex	xplain	the co	ncept	of eng	ineerir	ng star	tups, o	bjectiv	es and	d functi	ons and	l its	Ur	derstand	l
compon	ents.														
CO2:	Analy	ze the	startuj	os func	ling is	sues a	nd rem	unerati	on pr	actices	instartu	ips	Ar	nalyse	
business	5.														
CO3: A	nalyze	the va	arious	kinds	of stoc	ks and	l empl	oymen	oppo	ortunitie	es and		Ar	nalyse	
consider	ration	in star	tups b	usines	s.										
CO4:	Comp	are an	d cont	rast th	e vario	ous for	ms of	intellec	tual p	property	, protec	tionand	l Ar	nalyse	
practice															
CO5: Ex	xplore	the en	trepre	neuria	l mind	set and	d cultu	re that	has b	een dev	eloping	in	Ev	aluate	
	•				l indus						1 0	, ,			
	1						COM	IFS AN	ID DI		MMF	SDEC		OUTCO	MES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	M	-	-	-	-	M	М	S	-	М	-	M	-	L	
CO2	S	S	M	M	M	L	-	-	-	-	-	M	-	-	М
CO3	S	S	S	M	M	M	-	-	-	-	-	M	-	L	-
CO4	S	S	S	M	M	M	-	-	-	-	-	M	-	М	-
CO5	S	S	-	Μ	Μ	Μ	-	-	-	-	-	M	-	-	-

Elements of a successful Start up: Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service –Write your Business Plan

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Headhunters – Equity Ownership – Form of Equity incentive vehicles – Other compensation – EmploymentContracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk-Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – DisabilityInsurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Entrepreneurship: Entrepreneurship - Introduction to Technology Entrepreneurship and Technology Ventures – Engineers as Entrepreneurs, The Mindset of the Entrepreneurial Leader, Creating and Selling the Entrepreneurial Value Proposition - Essentials of Successful Entrepreneurs – Social environment in entrepreneurial development – Economic environment in entrepreneurial development.

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guie for theHigh-Tech Entrepreneur" 2nd ed, ProfessionalPublications.inc
- Donald F Kuratko, "Entreprenuership Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill,2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd EditionDream tech,2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

S.No	Name of the Faculty	Designation	Department	Mail ID	
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in	

2	Mr. T. Thangaraja	Assistant Professor	Management Studies	<u>thangaraja@avit.ac.in</u>	
---	-------------------	------------------------	--------------------	------------------------------	--

17EGHS82

PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT

Category	L	Т	Р
HSS	3	0	0

Credit

3

PREAMBLE

To develop students with good presentation and writing skills (Professionally & technically). Articulate and enunciate words and sentences clearly and effectively. Develop proper listening skills. Understand different writing techniques and styles based on the communication being used.

styles base			numea		ing use	u.									
PREREC	UISIT	E: NII													
COURSE	E OBJE	CTIV	ES												
1.	To dev	elop co	mmuni	cation	and per	rsonalit	y skills	5.							
2.	To imp writing		ptitude	skills,	train to	o impro	ve self-	learnir	ng / rese	earching	abilities,	presenta	tion ski	lls & tecl	nnical
3.	To imp	rove st	udents	employ	ability	skills.									
4.	To dev	elop co	mmuni	cation	and pro	blem s	olving	skills.							
5.	To dev	elop pr	ofessio	nal wit	h ideal	istic, pr	actical	and mo	oral val	ues.					
6.	To proc	luce co	ver lett	ters, res	sumes a	and job	applica	ation st	rategies	8.					
COURSE	E OUT(COME	S			-			-						
On the su	ccessfu	l comp	letion o	of the co	ourse, s	students	s will b	e able t	0						
CO1. Imp	rove stu	idents t	heir vo	cabula	ry and	use the	m in ap	propria	ate situa	ation			Und	erstand	
CO2. Dem	onstrate	e effect	ive use	of tear	n work	skills t	to comj	olete gi	ven tas	ks.			App	ly	
CO3. Spea	ıking wi	th clar	ity and	confide	ence th	ereby e	nhanci	ng emp	loyabil	ity skill	s of the st	tudents.	App	ly	
CO4. Train	n the stu	idents i	n orgai	nized a	nd prof	essiona	al writin	ng					App	ly	
CO5. Deve								while r	reading	text			App	ly	
CO6. Impr	ove cor	nmunio	cation a	and per	sonality	y skills.							App	ly	
MAPPIN	IG WIT	TH PR	OGRA	MME	OUTC	COMES	S AND	PROG	GRAM	ME SPI	ECIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	Μ	-	-	-	Μ	Μ	-	Μ	S	-	-	Μ	Μ	S
CO2	Μ	-	-	-	-	-	-	-	S	Μ	-	-	S	Μ	S
<u>CO3</u>	-	-	-	-	-	-	Μ	-	S	S	-	-	S	S	-
<u>CO4</u>	S	-	-	-	-	-	-	-	-	-	-	Μ	-	M	Μ
<u>CO5</u>	-	-	-	-	-	-	-	-	-	-	-	-	M	Μ	-
CO6	S	-	- []]	-	-	-	-	-	Μ	S	-	М	S	-	Μ
S- Strong	, wi-wie	aium; I	L-LOW												

COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication.

GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

READING AND WRITING SKILLS: Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV.

SPEAKING SKILLS: Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation

TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

ТЕХТ ВООК

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria & Sons, New Delhi, Rep''nt 2007

REFERENCE BOOKS

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India
- 3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C.and Krishna Mohan, Tata Mc Graw Hill.

S.No	Name of the Faculty	Designation		Department		Ema	il ID	
1.	Dr.P.Saradha	Associate Professor	English		saradhap	@vmkve	c.edu	.in
2.	Mr.S.K.Prem Kishor	Assistant Professor	English		Prem.eng	glish@av	it.ac.i	n
17MABS01	ENGINEERING	MATHEMATIC	S	Category	L	Т	Р	Credit

										E	BS	2	2	0	3
PREA	MBLE												I		
The dr	iving fo	rce in E	Enginee	ring Ma	themat	ics is th	ne rapid	growth	of tech	nnology a	and is de	signed to	provide	the basic	tools c
calculu	is main	ly for t	he purp	ose of	modelli	ing the	engine	ering p	roblems	s mather	natically	and obta	aining so	lutions. '	This is
founda	ation co	urse wh	ich mai	inly dea	ls with	topics	such as	single	variabl	e and mu	ıltivariat	le calcul	us and p	lays an i	mportar
role in	the und	erstand	ing of s	cience,	engine	ering, e	conomi	ics and	comput	er scienc	e, among	g other di	sciplines	8.	
PRER	EQUIS	SITE : N	NIL												
COUF	RSE OB	JECTI	IVES												
1	To id	entify th	ne chara	acteristi	cs of a	linear s	ystem v	vith Eig	en valu	ies and E	igen vec	tors.			
2	To in	prove t	heir abi	lity in s	olving	geomet	rical ap	plicatio	ons of d	ifferentia	al calculu	IS			
3	To fir	nd a ma	ximum	or mini	mum v	alue for	a func	tion of s	several	variables	subject	to a give	n constra	aint.	
4	To un	derstan	d the in	tegratio	on techr	iques f	or evalu	uating s	urface a	and volu	me integ	rals.			
5	Incor	porate t	he knov	vledge	of vecto	or calcu	lus to s	upport t	heir co	ncurrent	and subs	equent e	ngineerii	ng studies	8
COU	RSE OU	TCON	IES												
On the	success	sful con	npletior	n of the	course,	studen	ts will l	be able	to						
CO1.	Able to	underst	and the	system	of line	ar equa	tions ar	ising in	all eng	ineering	fields us	ing matr	ix	Undana	4 a m d
metho	ds.													Unders	tand
CO2.	Determi	ne the e	evolute	and env	velope f	or a giv	ven fam	ily of c	urves					Apply	
CO3.	Apply d	ifferent	iation t	o solve	maxim	a and m	inima p	problem	IS.					Apply	
CO4 .	Comput	e the ar	ea and	volume	of plan	e using	integra	tion						Apply	
CO5.	Evaluate	e the su	rface ar	nd volur	ne integ	gral usi	ng Gree	en's, Sto	okes an	d Gauss	Diverger	ice theore	ems	Analyz	e
MAPI	PING W	/ITH P	ROGR	AMM	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	М							М	М	М	
CO2	S	М	М	М	М							М	М	М	
CO3	S	М	М	М	М							М	М	М	
CO4	S	М	М	М	М							М	М	М	
CO5	S	М	М	М	М							М	М	М	
S- Stro	ong; M-l	Mediun	n; L-Lo	W	l	I	l	1	1	L	L	l	l	1	1
SYLL															

MATRICES: Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

DIFFERENTIAL CALCULUS: Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

FUNCTIONS OF SEVERAL VARIABLES: Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

MULTIPLE INTEGRALS: Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Tripleintegration.

VECTOR CALCULUS: Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green's theorem, Gauss divergence theorem and Stoke's theorem (excluding proof).

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai),(2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai(2016).

REFERENCES:

- 1. VeerarajanT., "EngineeringMathematics", TataMcGrawHillEducationPvt, NewDelhi (2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi(2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore(2012).
- 4. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10th Edition).

COURSE	DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in
2	Ms.S.Gayathri	Asst.Prof.Grade I	AVIT	gayathri@avit.ac.in

	MATHEMATICS FOD COMDUTED	Category	L	Т	Р	Credit
17MABS09	MATHEMATICS FOR COMPUTER ENGINEERS	BS	2	2	0	3

PREAMBLE

An engineering student needs to have some basic mathematical tools and techniques to apply in diverse applications in Engineering. This emphasizes the development of rigorous logical thinking and analytical skills of the student and appraises him the complete procedure for solving different kinds of problems that occur in engineering. The Laplace transform method is a powerful method for solving linear ODEs and corresponding initial value problems as well as systems of ODEs arising in Engineering. The knowledge of transformations is to create a new domain in which it is easier to handle the problem that is beinginvestigated.

PREREQUISITE: NIL

COU	RSE O	BJEC	FIVES												
1	To fa	miliari	ze with	the ap	plicati	ons of	differe	ntial ec	quation	IS.					
2	To lea	arn Lap	place tr	ansfor	m and	its Inve	erse me	ethod to	o solve	differer	tial Equ	ations a	nd integ	ral trans	forms
3	То са	lculate	the Fo	ourier ti	ransfor	ms of p	periodi	c funct	ion.						
4	To ga	in the	knowle	edge in	Z Trai	nsform	and its	s applic	cations						
COU	RSE O	UTCO	MES												
On the	succes	ssful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to)					
CO1.]	Predict	the suit	able me	thod to	solve s	second a	and hig	her orde	er diffei	rential eq	uations			Appl	у
CO2.]	Learn th	ne prope	erties of	Laplac	e trans	forms to	echniqu	ies						Unde	erstand
CO3. Apply Applications of Laplace transform to solve an ordinary differential equation. Apply															
	To use te the g			ansfor	n as th	e tool t	to conn	ect the	time c	lomain a	and frequ	uency de	omain to	Anal	yze
CO5.	Solve th	ne giver	differe	ence equ	uations	using Z	-transfe	orm.						Appl	у
MAPI	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC C	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	М							М	М	М	М
CO2	S	S	М	М	М							М	М	М	М
CO3	S	S	М	М	М							М	М	М	М
CO4	S	S	М	М	М							М	М	М	М
CO5	S	S	М	М	М							М	М	М	М

S- Strong; M-Medium; L-Low

SYLLABUS

ORDINARY DIFFERENTIAL EQUATIONS

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

LAPLACE TRANSFORMS

Laplace transform – transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals – initial and final value theorems – Transform of periodic functions

INVERSE LAPLACE TRANSFORMS AND APPLICATIONS

Inverse Laplace transform – Convolution theorem – Initial and Final value theorem-Solution of linear ODE of second order with constant coefficients and first order simultaneous equation with constant coefficients using Laplace transforms.

FOURIER TRANSFORMS

Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

Z – TRANSFORMS

Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform.

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", by Department of Mathematics, VMKVEC (Salem) &AVIT (Chennai),(2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).
- 3. Dr.A.Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).

REFERENCES:

- 1. Veerarajan, T., "Engineering Mathematics I, II and III", Tata McGraw Hill Publishing Co., New Delhi(2011).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi(2012)
- 3. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore(2012).
- 4. Kandasamy .P, Thilagavathy. K. and Gunavathy. K., "Engineering Mathematics", Volumes I & II (10th Edition), S. Chand & Co., New Delhi(2014).

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.L.Tamilselvi	Professor	AVIT	ltamilselvi@avit.ac.in
2	Mrs.V.T.Lakshmi	Asso.Prof	VMKVEC	lakshmi@vmkvec.edu.in

		I	NUME	RICA	L ME	ГНОД	S ANI	D NUM	IBER	Categ	ory	L	Т	Р	Credit
17M	ABS14				TH	IEOR	Y			BS	5	2	2	0	3
PREA	MBLE	2													
						•			-					-	propriate
	-	-	-		-									-	y encodes
					-							-	memory	manage	ement,
				ory and	the bas	sis ben	ind ain	nost all	of mo	dern cry	ptograp	ony.			
PKEK	EQUI	511E:	NIL												
COU	RSE OI	BJEC	FIVES												
1	To fa	niliar	with nu	umerica	al solut	ion for	the sy	stem of	f equati	ons					
2	To be	get ex	posed	to finit	e diffe	rences	and int	erpola	tion						
3	To be	thorou	ugh wi	th the n	umerio	al Dif	ferentia	ation a	nd integ	gration					
4	To giv	ve an i	ntegrat	ed app	roach t	o Num	ber Th	eory a	nd to ha	we the k	nowled	lge of di	vision al	gorithm	and
	funda	mental	l theore	em of a	rithme	tic									
5	To fai	niliar	with co	ongruer	nces an	d class	ical the	eorems							
COU	RSE OI	UTCO	MES												
On the	succes	sful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
		-			-	ic equa	tions a	nd sing	gle non	linear e	quation	is arising	g in the	Appl	v
	f Comp			-	-										<i>,</i>
	Apply ical dat		is num	erical r	nethod	s to fin	d inter	mediat	e nume	rical va	lue&Po	lynomia	l of	f Appl	у
			differe	ntiatior	n of a p	olynor	nial an	d evalu	ate the	definite	e integra	als byusi	ing		
	ical me				1	5					U	5	0	Appl	У
	-		-		oncepts	s of div	visibilit	y, grea	test co	mmon d	ivisor, _]	prime, p	rime-	Analy	vze
	zation a		0				1			• • •	1			•	
	•		-							assical t				Analy	yze
	1											1			DGGG
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	M	M							M	M	M	M
$\frac{\text{CO2}}{\text{CO2}}$	S S	S	M	M	M							M	M	M M	M
$\frac{CO3}{CO4}$	S S	S S	M M	M M	M M							M M	M S	M S	M M
CO4 CO5	S S	<u>S</u>	M	M	M							M	S S	<u>S</u>	M
	ong; M				141	-	-	_	_	-	-	141	C	U U	141

SOLUTION OF EQUATIONS: Method of false position, Newton-Raphson method for single variable, Solutions of a linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss- Seidel methods. Inverse of a matrix by Gauss-Jordan method.

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both1/3rd and 3/8th) rules. Romberg's rule, two and three point Gaussian quadrature formula.

DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS :Division algorithm -Base-b Representations - Number Patterns - Prime and Composite Numbers – GCD - Euclidean Algorithm - Fundamental Theorem of Arithmetic - LCM.

CONGRUENCES AND CLASSICAL THEOREMS: Congruence's - Linear Congruence's, Chinese Remainder Theorem, Wilson's Theorem - Fermat's Little Theorem - Euler's Theorem.

TEXT BOOKS:

- 1. Dr.B.S.Grewal, "Numerical Methods in Engineering & Science", Khanna Publishers, 2007
- 2. Thomas Koshy, "Elementary Number Theory with Applications", Elsevier publications, 2002.
- 3. David.M.Burton."Elementary Number theory", Tata McGraw HillEdition,2012.

REFERENCES:

- 1. T. Veerarajan, T. Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill, 2004.
- 2. Niven.I, Zuckerman.H.S and Montgomery.H.L, "An Introduction to Theory of Numbers", John Wiley and sons,2004.

Mail ID

S.No Name of the Faculty Designation Name of the College Professor AVIT Dr.L.Tamilselvi ltamilselvi@avit.ac.in 1 2 VMKVEC Assistant Professor usha@vmkvec.edu.in Ms.M.Usha

17M/	ABS15	F	PROBA	BILIT	Y ANI) OUEI	UEING	THE	DRY	Categ	gory	L	Т	Р	Credit
						Q 02				BS	5	2	2	0	3
	MBLE		1.		1.1.0		11	G ,	ſ		1 1 11.	.1		1 .	.1 1
study o	of model	s for sto	ochastic	proces	ses whi	ch are r	elevant	in proc	essing c		n signals				a thorough thematica
PRER	EQUIS	ITE: N	IIL												
COUR	RSE OB	JECTI	IVES												
1	To be	thorou	gh with	probab	oility co	ncepts a	and ran	dom va	riables.						
2	To be	familia	ar with o	differen	t statist	ical dis	tributio	ns and t	the typic	cal pheno	omena th	at each d	listributio	on often o	lescribes.
3	To ac	quire sl	kills in h	nandling	g situati	ons inv	olving	more th	an one	random	variable	and func	tions of r	andom v	ariables.
4	To be	get exp	posed to	the co	ncepts o	of rando	om proc	esses a	nd discr	ete time	Markov	chain.			
5	To stu	ıdy que	uing me	odels to	analyz	e the re	al worl	d syster	ns.						
COUR	RSE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	studen	ts will t	be able	to						
	Understa n variab		concep	ts of rai	ndom v	ariable	and pro	babiliti	es assoc	ciated wi	th the di	stributio	ns of	Unde	rstand
CO2. (Classify	the ran	dom va	riables	to deter	mine th	ne appro	opriate	distribu	tions.				Appl	y
	Apply the ations of the ation of the ati		-				distribu	itions to	o establi	sh the di	stributio	n of linea	ar	Appl	у
CO4. (system	•	and ap	ply the	concep	ts of pro	obabilit	y, Ranc	lom Pro	ocess an	d their aj	oplicatio	ns in Pro	babilistic	Analy	yze
CO5. 1	Derive a	nd ana	lyze the	single	and mu	ltiserve	r queue	eing sys	tem.					Anal	yze
MAPP	PING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	М							М	S	М	М
CO2	S	S	М	Μ	Μ							Μ	S	Μ	М
CO3	S	S	М	Μ	Μ							Μ	S	Μ	М
CO4	S	S	М	Μ	Μ							Μ	S	Μ	M
CO5	S	S	Μ	Μ	Μ							М	S	S	S
S- Stro	ong; M-	Mediu	m; L-L	OW											
a .	. DIIG														
SYLL.	ABUS														
PROB	ABILI	ΓΥ ΑΝ	D RAN	DOM	VARIA	BLES	: Proba	bility co	oncents	Randon	ı variahl	es, mom	ents, Moi	nent Ger	nerating
			perties.				1004			1.41401		,			

STANDARD DISTRIBUTIONS: Binomial, Poisson, Geometric, Uniform, Exponential, Gamma, Weibull distributions, Functions of random variable, Chebychev inequality.

TWO-DIMENSIONAL RANDOM VARIABLES: Marginal and conditional distributions, Covariance, Correlation and regression, Transformation of random variables, Central limit theorem.

RANDOM PROCESSES, MARKOV CHAIN: Classification, Stationary process, Markov process, Binominal process, Poisson process, Birth and death process, Renewal process, Markov chain, Transition probabilities, Limiting distributions.

OUEUEING THEORY: Markovian queueing models, Little's formula, M/M/1, M/M/C – finite and infinite capacity.

TEXT BOOKS:

- 1. Dr.A.Singaravelu, "Probability and Queuing Theory", Meenakshi Agency, Chennai, 2012.
- 2. Kapur.J.N. and Saxena.H.C. "Mathematical Statistics", S.Chand & Company Ltd. New Delhi, 1997.

REFERENCES:

- 1. T.Veerarajan, "Probability, Statistics and Random processes" (Third Edition), Tata McGraw-Hill publishing Company Ltd., New Delhi,2008.
- 2. P.Kandasamy, K.Thilagavathy, K.Gunavathy "Probability, Random Variables and Random Processes" S.Chand &Company Ltd., New Delhi, 2008.
- 3. Allen.A.O, "Probability Statistics and Queuing theory with Computer science applications", Academic Press, 2nd edition,1990.
- 4. S.C.Gupta and V.K.Kapoor, Fundamentas of Mathematical Statistics", 11th extensively revised edition, S.Chand & Sons,2007.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Ms.M.USHA	Assistant professor	VMKVEC	usha@vmkvec.edu.in
2	Dr.A.K.Thamizhsudar	Asso.Prof. grade II	AVIT	thamizhsudar@avit.ac.in

17MABS22	MATHEMATICS FOR MACHINE	Category	L	Т	Р	Credit	
	LEARNING	BS	2	2	0	3	

PREAMBLE

In this course we will study the mathematical foundations of Machine Learning, with an emphasis on the interplay between approximation theory, statistics, and numerical optimization. We will begin with a study of Statistical Learning Theory, including the concepts of Empirical Risk Minimization, Regularization and VC dimension. We will then study popular machine learning models, including deep neural networks, and analyse the underlying Optimization methods.

PREREQUISITE: ENGINEERING MATHEMATICS

COUR	SE Ol	BJECT	FIVES												
1	To study about the problem of supervised learning from the point of view of function approximation, optimization, and statistics														
2	To identify the most suitable optimization and modelling approach for a given machine learning problem														
3	To analyse the performance of various optimization algorithms from the point of view of computational complexity (both space and time) and statistical accuracy														
4	To implement a simple neural network architecture and apply it to a pattern recognition task														
COUR	SE OI	UTCO	MES												
On the successful completion of the course, students will be able to															
	CO1. Understand the problem of supervised learning from the point of view of function Understand pproximation, optimization, and statistic									rstand					
CO2. Understand the most suitable optimization and modelling approach for a given machine learning problem									Understand						
	CO3. Analyse the performance of various optimization algorithms from the point of view of computational complexity (both space and time) and statistical accuracy Analyse									yse					
CO4. To analyse a simple neural network architecture on a pattern recognition task Analyse									yse						
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	М							М	М	М	М
CO2	S	S	М	М	М							М	М	М	М
CO3	S	S	М	М	М							М	М	М	М
CO4	S	S	М	М	М							М	S	S	М
CO5	S	S	М	М	Μ							М	S	S	М
S- Stro	ng; M	-Medi	um; L	-Low											

LINEAR ALGEBRA

Definition, applications, solving linear systems, linear inequalities, linear programming. Real-valued functions of two

or more variables.Definition, examples, simple demos, applications

PROBABILITY

Binomial, Poisson, Geometric, Uniform, Exponential, Gamma, Weibull distributions, Functions of random variable, Chebychev inequality.

STATISTICAL LEARNING THEORY:

Binary Classification - Finite Hypothesis Sets - PAC Learning - Learning Shapes - Rademacher Complexity - The VC Dimension - The VC Inequality - Genral Loss Functions - Covering Numbers - Model Selection

CALCULUS

Curvature - Cartesian and Parametric Co-ordinates - Centre and radius of curvature - Circle of curvature - Evolute.

OPTIMIZATION

Overview of Optimization – Convexity – Lagrangian Duality – KKT Conditions – Support vector Machines I – Support Vector Machines II – Iterative algorithm and Gradient Descent – Convergence of Iterative Methods – Convergence of Gradient Descent – Extensions of Gradient Descent – Stochastic Gradient Descent

TEXT BOOKS:

- 1. M.Mohri, A. Rostamizadeh and T. Talwalkar, "Foundation of Machine Learning", Adaptive Computation and Machine Learning series, MIT Press, 2012
- 2. S. Shalev Shwartz and S. ben David, Understanding Machine Learning : from theory to algorithms, Cambridge University Press, 2014

REFERENCES:

1. T. Hastie, J. Fraidman, R. Tibshirani, Elements of Statistical Learning, Volume 2, Springer, 2009.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.L.Tamilselvi	Professor	AVIT	ltamilselvi@avit.ac.in
2	Ms.M.Usha	Assistant Professor	VMKVEC	usha@vmkvec.edu.in

17MABS2	23	I	MATH	IEMA	FICS I	FOR D	ATA S	SCIEN	ICE	Categ	ory	L	Т	Р	Credit
										BS	5	2	2	0	3
PREAM	IBLE														
The cour								Linear	Algeb	ra and N	Iultivar	iable Ca	lculus th	at will	
be neede					•										
PRERE	QUIS	SITE:	ENGIN	JEERIN	IG MA	THEM	ATICS								
COURS	E OE	BJECT	FIVES												
1 Т	Гo stu	dy the	funda	mental	proper	ties of	matric	es, the	ir norm	is, and th	neir app	lications	8		
			conce ian ma		Differe	ntiating	g/integ	rating	multipl	e variab	le funct	ions, an	d the role	e of the	gradient
	Fo lea /ariab		out Bas	ic prop	erties o	of optin	nizatic	on prob	lems ir	volving	matrice	es and fu	inctions	of multi	ple
COURS	E OU	JTCO	MES												
On the su	ucces	sful co	ompleti	on of t	he cou	rse, stu	dents v	will be	able to						
СО1. То	o unde	erstand	l the fu	ndame	ntal pr	opertie	s of ma	atrices,	their n	orms, ai	nd their	applicat	tions	Unde	rstand
CO2. T role of th							iating/	integra	ting m	ultiple v	ariable	function	is, and th	^e Unde	rstand
CO3. To multiple			t Basic	proper	rties of	optimi	zation	proble	ems inv	olving n	natrices	and fun	ctions of	^f Unde	rstand
MAPPIN	NG V	VITH	PROG	GRAM	ME O	UTCO	MES	AND F	ROGI	RAMM	E SPEC	CIFIC C	UTCO	MES	
COS F	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	М							М	М	М	М
CO2	S	S	М	М	М							М	М	М	М
CO3	S	S	М	М	М							М	М	М	М
S- Stron	g; M	-Medi	um; L	-Low				1				1	I		

MATRICES AND BASIC OPERATIONS, SQUARE MATRICES

Matrices and Basic Operations, interpretation of matrices as linear mappings, and some example. Square Matrices, Determinants, Properties of determinants, singular and non-singular matrices, examples, finding an inverse matrix

EIGEN FORMS AND NORMED SPACES

Characteristic Polynomial, Definition of Left/right Eigenvalues and Eigenvectors, Caley-Hamiltontheorem, Singular Value Decomposition, interpretation of eigenvalues/vectors. Normed Spaces, Vector Spaces, Matrix NormsDefinition of complete normed and vector spaces and some examples. Matrix norms and properties, applications to series of matrices and their convergence

NULL MATRIX AND DEFINITE MATRICES

The Range and the Null space of a Matrix. Definition and basic properties, orthogonality, Gram-Schmidt algorithmPositive-Definite Matrices and the Taylor Expansion of a two-variable function. Definition of positive-definiteness and the role of the eigenvalues. Physical meaning and importance in real-life problems

LINEAR SYSTEMS AND REAL VALUED FUNCTIONS:

Definition, applications, solving linear systems, linear inequalities, linear programming. Real-valued functions of two or more variables.Definition, examples, simple demos, applications

ANALYSIS ELEMENTS AND OPTIMIZATION PROBLEMS, INTEGRATION, CONVEX OPTIMIZATION

Distance, Limits, continuity, differentiability, the gradient and the Hessian. Optimization problems: Simple examples, motivation, the role of the Hessian, maxima and minima and related extrema conditions. Integration: Double integrals, Fubini's theorem, properties, applications. Elements of Convex Optimization: Functions of n variables. Convex sets, convex functions, convex problems, and their basic properties.Examples of convex problems, convexity versus non-convexity

REFERENCES:

1. Gilbert Strang, Linear Algebra and Its Applications, Thomson/Brooks Cole (Available ina Greek Translation) Thomas M. Apostol, Calculus, Wiley, 2nd Edition, 1991, ISBN 960-07-0067-2.

2. Michael Spivak, Calculus, Publish or Perish, 2008, ISBN 978-0914098911.

- 3. Ross L. Finney, Maurice D. Weir, and Frank R. Giordano, Thomas's Calculus, Pearson, 12th Edition, 2009.
- 4. David C. Lay, Linear Algebra and Its Applications, 4th Edition.
- 5. 'Yousef Saad, 'Iterative Methods for Sparse Linear Systems'

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.L.Tamilselvi	Professor	AVIT	ltamilselvi@avit.ac.in
2	Ms.M.Usha	Assistant Professor	VMKVEC	usha@vmkvec.edu.in

	BS24		JAI	18110	CALI	FOUN	DAT	IONS	5	Categ	gory	L	Т	Р	Credit
										BS	5	2	2	0	3
study of study of	ity is e models waitin	s for sto g lines	ochastic and it's	proces s a prim	ses whi ary too	ch are r l for stu	elevant dying t	in proc	essing o		n signals				a thoroug athematica
PRERE	QUISI	I TE: E	NGINE	EERINC	G MAT	HEMA	ΓICS								
COURS	E OB.	JECTI	VES												
1 '	To be	thoroug	gh with	probab	ility co	ncepts a	and ran	dom va	riables.						
2	To be	familia	r with o	lifferen	t statist	ical dist	ributio	ns and t	the typi	cal pheno	omena th	at each d	listributio	on often o	describes.
3	To acq	luire sk	tills in h	nandling	g situati	ons inv	olving	more th	an one	random	variable	and func	tions of r	andom v	ariables.
4	To be	get exp	osed to	the cor	ncepts o	of rando	om proc	esses a	nd disci	rete time	Markov	chain.			
5	To stu	dy que	uing mo	odels to	analyz	e the re	al worl	d syster	ns.						
COURS	E OU	ГСОМ	IES												
On the su	uccessi	ful con	pletion	of the	course,	student	s will t	e able	to						
CO1. Ur random v			concep	ts of rar	ndom v	ariable	and pro	babiliti	es asso	ciated wi	th the di	stributio	ns of	Unde	rstand
CO2. Cl	assify	the ran	dom va	riables	to deter	mine th	ne appro	opriate	distribu	tions.				Appl	у
CO3. Ap			-				distribu	tions to	o establi	sh the di	stributio	n of linea	ır	Appl	у
CO4. Classification of the systems.	assify	and ap	ply the	concept	ts of pro	obabilit	y, Rand	lom Pro	ocess an	d their aj	pplicatio	ns in Pro	babilistic	Anal	yze
C O5. De	erive a	nd anal	yze the	single	and mu	ltiserve	r queue	ing sys	tem.					Anal	yze
MAPPI	NG W	ITH P	ROGR	AMMI	EOUT	COME	S AND	PROC	GRAMI	ME SPE	CIFIC (DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	М							М	S	М	М
CO2	S	S	М	М	М							М	S	М	М
CO3	S	S	Μ	М	М							М	S	М	М
CO4	S	S	Μ	М	Μ							М	S	M	M
CO5	S	S	М	М	М							М	S	S	S
S- Stron	g; M-]	Mediu	m; L-L	OW											
SYLLA	RUS														
JILLA	000														
PROBA function				DOM	VARIA	BLES	Proba	bility co	oncepts	, Randon	n variabl	es, mom	ents, Moi	ment Gei	nerating

STANDARD DISTRIBUTIONS: Binomial, Poisson, Geometric, Uniform, Exponential, Gamma, Weibull distributions, Functions of random variable, Chebychev inequality.

TWO-DIMENSIONAL RANDOM VARIABLES: Marginal and conditional distributions, Covariance, Correlation and regression, Transformation of random variables, Central limit theorem.

RANDOM PROCESSES, MARKOV CHAIN: Classification, Stationary process, Markov process, Binominal process, Poisson process, Birth and death process, Renewal process, Markov chain, Transition probabilities, Limiting distributions.

OUEUEING THEORY: Markovian queueing models, Little's formula, M/M/1, M/M/C – finite and infinite capacity.

TEXT BOOKS:

- 1. Dr.A.Singaravelu, "Probability and Queuing Theory", Meenakshi Agency, Chennai, 2012.
- 2. Kapur.J.N. and Saxena.H.C. "Mathematical Statistics", S.Chand & Company Ltd. New Delhi, 1997.

REFERENCES:

- 1. T.Veerarajan, "Probability, Statistics and Random processes" (Third Edition), Tata McGraw-Hill publishing Company Ltd., New Delhi,2008.
- 2. P.Kandasamy, K.Thilagavathy, K.Gunavathy "Probability, Random Variables and Random Processes" S.Chand &Company Ltd., New Delhi, 2008.
- 3. Allen.A.O, "Probability Statistics and Queuing theory with Computer science applications", Academic Press, 2nd edition,1990.
- 4. S.C.Gupta and V.K.Kapoor, Fundamentas of Mathematical Statistics", 11th extensively revised edition, S.Chand & Sons,2007.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Ms.M.USHA	Assistant professor	VMKVEC	usha@vmkvec.edu.in
2	Dr.A.K.Thamizhsudar	Asso.Prof. grade II	AVIT	thamizhsudar@avit.ac.in

17PCB	S02					L SCIE				Categ	gory	L	Т	Р	Credit
			PAI	RT A -	ENGIN	IEERII	NG PH	IYSICS	5	B	S	2	0	0	2
domains.	ng Phy Unders inicatio	standi on and	ng the c 1 differ	oncepts ent type	s of lase	er, types	of lase	rs, thep	ropagat	tion of lig	ght throug	gh fibers	, applicat	ions of op	engineering otical fibers to fabricate
PREREC	QUISIT	ГЕ:	NII	1											
COURSE	E OBJI	ECTI	VES												
1	To re	call th	ne prope	erties of	f laser a	nd to e	xplain p	principl	es of la	ser					
2	To as	sess t	he appl	ications	of lase	r									
3				iples of											
4	To st	udy th	ne appli	cations	of fiber	optics									
5	To ex	plain	various	s techni	ques us	ed in N	on-dest	tructive	testing						
COURSE					•										
On the s	success	sful co	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1. U	ndersta	nd the	e princi	ples las	er, fibe	r optics	and no	n-destr	uctive t	esting			Underst	and	
CO2. U	ndersta	nd the	e constr	ruction	of laser	, fiber o	ptic an	d Non-	Destruc	tive testi	ng equip	ments	Underst	and	
			he work nd devi		laser, fi	ber opti	ic and N	Non-De	structiv	e testing	based		Apply		
	terpret arious f			applica	ations o	f laser,	fiber oj	ptics an	d Non-l	Destructi	ve testin	g in	Apply		
				king mo aseddev		various	types o	f laser,	fiber op	otic and N	Non-		Analyze	2	
MAPPIN	G WI	TH P	ROGR	AMMI	E OUT	COME	S AND	PRO	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	РО 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М									М	М		
CO2	S		L									М			
CO3	S			M		~	M					M	M		
CO4	S	M	<u> </u>	М	М	S	М					M	M		
CO5 S- Strong	S	M	M									М			

UNIT-I

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram

UNIT-II

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

UNIT-III

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be

University), Salem.

2. P.K. Palanisamy, Engineering Physics, Scientific Publishers, 2011.

3. Dr.M. N. Avadhanulu, Engineering Physics, S.Chand & Co,2010.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2001.

4. Avadhanulu.M.N., Arun Murthy.T.V.S, Engineering Physics Vol. I, S.Chand, 2014.

5. Rajendran. V, Engineering Physics, Tata McGraw Hill Publication and Co., New Delhi, 2009.

6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	<u>dhanalakshmi.phy@avit.ac.in</u>

17PCBS02	PHYSICAL SCIENCES PART B -ENGINEERING CHEMISTRY	Category	L	Т	Р	С
	Semester I (Common to All Branches)	BS	2	0	0	2

Preamble

Objective of this course is to present a better understanding of basic concepts of chemistry and its applications on different engineering domains. It also imparts knowledge on fundamentals of Electrochemistry, Energy storage technologies, properties of water and its treatment methods, classification of fuels, Non conventional sources of Energy and variousadvanced Engineering materials.

Prerequisite

NIL

CourseObjectives

1	To impart basic knowledge in Chemistry so that the student will understand the engineering concept
2	To familiar with electrochemistry and Battery and fuel Cells
3	To lay foundation for practical applications of water softening methods and its treatment methods in engineering aspects.
4	To inculcate the knowledge of fuels and advanced material.

Course Outcomes

After the successful completion of the course, learner will be able to

CO1.	Describe the electrochemistry, batteries and working principle of	Understand
	energy storage devices	
CO2.	Estimate the hardness of water	Apply
CO3.	Identify suitable water treatment methods	Analyze
CO4.	Outline the important features of fuels and advanced materials	Analyze

Mapping with Programme Outcomes and Programme SpecificOutcomes

COs	PO	PO	PO	PO	РО	PO	РО	РО	РО	РО	PO	PO	PS	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	03
CO1.	S	Μ	-	Μ	-	S	S	S	-	-	L	Μ	Μ	-	Μ
CO2.	S	S	Μ	-	-	Μ	М	Μ	-	-	-	Μ	-	-	-
CO3.	S	S	Μ	-	-	Μ	S	Μ	-	-	-	Μ	-	-	-
CO4.	S	-	-	-	L	L	М	L	-	-	-	S	М	-	М

S- Strong; M-Medium; L-Low

Electrochemistry, Batteries and Fuel cells

Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - cells - EMF measurement.

Primary battery (Daniel and dry cell) - secondary battery (lead Acid storage battery and

Nickel-Cadmium battery) – Fuel cell (H_2 - O_2 fuel cell)

Water Technology and Corrosion

Sources of water – impurities – Hardness and its determination (problems to be avoided) – boiler

troubles – water softening (Zeolite & Demineralisation) – Domestic water treatment – Desalination (Electrodialysis & Reverse Osmosis).

Fuels And Chemistry of Advanced Materials

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) – Calorific Value of a

fuel –Non Petroleum Fuels –Non conventional sources of Energy – combustion.

Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite)

TEXT BOOKS

1. Engineering Chemistry by prepared by Vinayaka Mission's Research Foundation, Salem.

REFERENCEBOOKS

- 1. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 2. Engineering Chemistry by Jain & Jain, 15th edition Dhanpatrai Publishing Company (P) Ltd., NewDelhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., NewDelhi.
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant Professor	Chemistry	asmgill80@gmail.com
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate Professor	Chemistry	sanghamitra.chemistry@avit.ac.in

CourseDesigners:

17PHBS05	SMART MATERIALS	Category	L	Т	Р	Credit
171 11505		BS	3	0	0	3

PREAMBLE

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials & Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconductingmaterials.

PREREQUISITE: NIL

COURSE OBJECTIVES

COU	NSE ODJECTIVES						
1	To explain the fundamental properties and classification of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.						
2	To paraphrase the basic crystalline structure and its properties.						
3	To illustrate the synthesis and fabrication of Nano materials.						
4	To predict the application of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.						
5	To analyze the various parameters of crystalline materials.						
COU	RSE OUTCOMES						
On the	e successful completion of the course, students will be able to						
CO1.	Restate the properties of various materials.	Understand					
CO2.	Summarize the various structures of materials.	Understand					
CO3.	Predict the applications of various materials to designing equipments.	Apply					
CO4.	Illustrate the properties of materials to designing equipments.	Apply					
CO5.	Calculate the crystalline parameters of the materials.	Analyze					
MAP	PING WITH PROGRAMME OUTCOMES AND PROGRAMME SPEC	CIFIC OUTCOMES					

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	М	S				Μ			S			
CO2	S	Μ	S	М	S				Μ			М			
CO3	S	S	S	S	S				S			М	S	М	М
CO4	S	Μ	S	М	S				Μ			М	S	М	М
CO5	Μ	S	S	М	Μ				S			М			
S Stro	ng: M	Modium	v I I o	X 7	•					•	•	•	•	•	

S- Strong; M-Medium; L-Low

SYLLABUS

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS: Nanophase materials - Top-down approach - Mechanical Grinding - Lithography - Bottom-up

approach – Sol-gel method – Carbon nanotubes – Fabrication – applications.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

TEXT BOOK:

Mani P, Engineering Physics II, Dhanam Publications, 2018.

REFERENCES:

1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2018.

2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2018.

COUN	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. S. MOHAMMED HARSHULKHAN	Asst.Prof	Physics	harshulkhan@vmkvec.edu.in								
2	Mr. R. SAKTHI GANAPATHY	Asst.Prof	Physics	sakthiganapthy@vmkvec.edu.in								
3	Dr .G. LATHA	Professor	Physics	latha.physics@avit.ac.in								
4	Dr. R. N. VISWANATH	Professor	Physics	viswanath.physics@avit.ac.in								

PHYSICAL SCIENCES LAB: PART A – REAL AND VIRTUAL LAB IN PHYSICS

Category	L	Т	Р	Credit
BS	0	0	2	1

PREAMBLE

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE: NIL

	RSE OB	JECTI	VES												
1	To im	part ba	sic skill	s in tak	ing read	ding wi	th preci	sion of	physics	s experin	nents				
2	To inc	culcate	the hab	it of ha	ndling e	equipme	ents app	propriat	ely						
3	To gain the knowledge of practicing experiments through virtual laboratory.														
4	To know the importance of units														
5	To obtain results with accuracy														
COUR	SE OU	TCOM	IES												
On tl	ne succe	essful co	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1. Recognize the importance of units while performing the experiments, calculating the physical parameters and obtaining results															
CO2.	Operat	e the eq	luipmer	nts with	precisi	on							Apply		
CO3.	Practic	e to hai	ndle the	equipr	nents in	a syste	matic r	nanner					Apply		
CO4.	Demor	strate t	he expe	riment	s throug	h virtu	al labor	atory					Apply		
CO5.	Calcula	ate the 1	esult w	vith accu	uracy								Analyze	e	
MAPP	PING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PRO(GRAM	ME SPE	CIFIC (OUTCO	MES		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COS		C													
COS CO1	S	S							М			М	М		
	S S	S S	М	М	S										
CO1			М	М	S										
CO1 CO2	S		M	M M	S S							S	M		

SYLLABUS

- 1. Young's modulus of a bar Non-uniformbending
- 2. Rigidity modulus of a wire TorsionalPendulum
- 3. Viscosity of a liquid Poiseuille'smethod
- 4. Velocity of ultrasonic waves in liquids UltrasonicInterferometer
- 5. Particle size determination usingLaser
- 6. Wavelength of spectral lines grating –Spectrometer
- 7. Thickness of a wire Air wedgeMethod
- 8. Thermal conductivity of a bad conductor Lee'sdisc

- 9. Band gap determination of a thermistor Post OfficeBox
- 10. Specific resistance of a wire –Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka

Missions Research Foundation (Deemed to be University), Salem.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in								
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in								
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in								
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in								

17PCBS81	PHYSICAL SCIENCES PART B - ENGINEERING CHEMISTRY LAB	Category	L	Т	Р	С
	Semester I (Common to All Branches)	BS	0	0	2	1

Preamble

The main objective of this course is to develop the intellectual and psychomotor skills of the students by imparting knowledge in water technology and quantitative analysis.

Prerequisite

NIL

Course Objectives

1	To impart basic skills in Chemistry so that the student will understand the engineering concept.								
2	To inculcate the knowledge of water and electrochemistry.								
3	To lay foundation for practical applications of chemistry in engineering aspects.								
Course	Course Outcomes								

After the successful completion of the course, learner will be able to

CO1.	Estimate the chemical properties of water	Apply
CO2.	Determine the presence of various elements in the water	Analyze
CO3.	Calculate the strength of acids, oxidizing and reducing agents	Analyze

Mapping with Programme Outcomes and Programme SpecificOutcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO1.	S	М	М	-	L	М	М	S	-	-	-	М	-	М	М
CO2.	S	М	М	-	L	М	М	L	-	-	-	М	М	М	М
CO3.	S	S	М	-	L	М	М	М	-	-	-	М	-	М	М

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometricmethod
- 3. Acid Base titration by pHmethod
- 4. Estimation of Ferrous ion by Potentiometricmethod
- 5. Determination of Dissolved oxygen by Winkler'smethod
- 6. Estimation of Sodium by Flamephotometer
- 7. Estimation of Copper from Copper OreSolution
- 8. Estimation of Iron bySpectrophotometer

TEXTBOOKS

1. Laboratory Manual on Engineering Chemistry prepared by Vinayaka Mission's Research Foundation, Salem.

REFERENCE BOOKS

1. Laboratory Manual on Engineering Chemistry, K. Bhasin S, Dhanpat Rai Publishing Co Pvt Ltd

Course Designers:

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant Professor	Chemistry	asmgill80@gmail.com
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate Professor	Chemistry	sanghamitra.chemistry@avit.ac.in

17EEES03

BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING A. BASIC ELECTRICAL ENGINEERING

Category	L	Т	Р	
ES	2	0	0	

Credit

2

PREAMBLE

It is a preliminary course which highlights the basic concepts and outline of Electrical engineering. The concepts discussed herein are projected to deliver explanation on basic electrical engineering for beginners of all engineering graduates.

PREREQUISITE – NIL

COURSE OBJECTIVES

COUR	SE OD	JEUI	IVES												
1	To understand the electrical inventions, basic concepts of AC and DC circuits and basic laws of electrical														
1	engineering.														
2	To gain knowledge about the working principle, construction, application of DC and AC machines and measuring instruments.														
		-													
3	To understand the fundamentals of safety procedures, Earthing and Power system.														
COUR	OURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
	1: Explain the evolution of electricity, name of theinventors, electrical quantities basic laws of electrical engineering.														
CO2: [Demonstrate Ohm's and Faraday's Law. Apply														
and its	Understand the basic concepts of measuring instruments, electrical machineries s applications. Understand														
	Analyze the various types of electrical loads, power rating of electrical Analyze Analyze Analyze														
CO5: E	Explain	the ele	ctrical	safety a	nd prot	ective d	levices.					Understa	und		
CO6: C of conv	-			• •		·	generat	ion syst	tems by	applicat	tion	Analyze			
MAPP	'ING V	VITH I	PROG	RAMM	E OUI	COM	ES ANI	D PRO	GRAM	IME SP	ECIFI	COUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L		S							L	L	L	
CO2	S	М	S	S					М	-		М	L	М	L
CO3	L	S	L		S					L		L	L	L	
CO4	S M S L L S S S L L M L														
CO5	L M S M S M M S L L L														
CO6	CO6 S L S L M S S M L L L L														
S-Stro	S- Strong; M-Medium; L-Low														

HISTORY OF ELECTRICITY, QUANTITIES AND CIRCUITS

Evolution of Electricity and Electrical inventions, Electrical quantities- Charge, Electric potential, voltage, current- DC & AC, power, energy, time period, frequency, phase, flux, flux density, RMS, Average, Peak, phasor & vector diagram. Electric Circuits - Passive components (RLC), Ohm's law, KCL, KVL, Faraday's law, Lenz's law. Electrical materials – Conducting and insulatingmaterials.

MEASURING INSTRUMENT AND ENERGY CALCULATION

Measuring Instruments – Analog and Digital meters – Types and usage. AC and DC Machines & Equipment- Types, Specifications and applications.

Loads – Types of Loads- Power rating and Energy calculation – for a domesticload. Energy Efficient equipments – star ratings.

ELECTRICALSAFETY AND INTRODUCTIONTOPOWERSYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Electric Power- Generation resources, Transmission types & Distribution system (levels of voltage, power ratings and statistics)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K,RohitMetha,"BasicElectricalEngineering",FifthEdition,Chand.S&Co,2012.
- 2. Kothari.D.PandNagrath.I.J, "BasicElectricalEngineering", SecondEdition, TataMcGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.
- 4. P. Selvam, R. Devarajan, A.Nagappan, T. Muthumanickam and T. Sheela"Basic Electrical and Electronics Engineering", First Edition, VMRFDU, Anuradha Agencies, 2017

REFERENCE BOOKS:

COUDCE DECICNEDO

1. SmarajtGhosh, "FundamentalsofElectrical&ElectronicsEngineering", SecondEdition, PHILearning, 2007.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

57

17EE	F\$03	BA	ASICS	OF EL		ICAL A		LECTF	RONICS	в с	ategory	L	T]	P C	redit
	E903		B. BA	SIC EI				INEER	RING		ES	2	0	0	2
The concept the stud	REAMBLE the course aims to impart fundamental knowledge on electronics components, digital logics and communication engineering procepts. The course begins with classification of various active and passive components, diodes and transistors. It enables e student to design small digital logics like multiplexer, demultiplexer, encoder, decoder circuits, c. It crafts the students to get expertise in modern communication systems.														
	RQUISITE – NIL														
COUR	RSE OBJECTIVES														
1	To lea	rn and	identify	variou	s active	e and pa	issive c	ompone	ents and	their wo	orking pi	rinciples.			
2	To uno	derstan	d the nu	umber c	onversi	ion syst	ems.								
3	To lea	rn the c	ligital l	ogic pri	nciples	and rea	alize ad	ders, m	ultiplex	er, etc.,					
4	To une	derstan	d the ap	oplicatio	on orier	ited con	cepts in	n the co	mmunic	cation sy	stems.				
COUR	RSE OUTCOMES														
On the	he successful completion of the course, students will be able to														
CO1. In electron	nterpret	workin workin	ng prino s like ro	ciple an esistors	d applie , capaci	cation o tors, in	of variou ductors	us activ , diodes	e and pa s and tra	ssive nsistors	1	Understa	nd		
					-			-	their ope			Apply			
CO3. E operati		numbe	r syster	n conve	ersions	and con	npute se	everal d	ligital lo	gic		Apply			
									oder cire			Apply			
	Apply th ID, OLH			nologie	es in de	velopin	g applie	cation o	riented	gadgets	like	Apply			
MAPP	'ING W	ITH P	PROGE	RAMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPH	ECIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М							М				S	-	-
CO2	S M M M M											Μ	-	-	-
CO3	3 S M M M												М	-	
CO4	4 S M M M M M M													-	
CO5	95 S M M M ^M M M M M													М	
S- Stro	ng; M-l	Mediun	n; L-Lo	W											

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers - Voltage Regulation. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Conversion from one to another – Logic Gates – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM – RADAR – Satellite Communication – Mobile Communication, LED, HD, UHD, OLED, HDR &Beyond, Smart Phones – Block diagramsOnly.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

	BASIC CIVIL ENGINEERING(Common to	Category	L	Т	Р	Credit
17CMES02	CIVIL, MECHANICAL, CSE, ECE, EEE,					
	S&AE & MECT)	ES	2	0	0	2

Preamble

The aim of the subject is to provide a fundamental knowledge of basic Civil Engineering

Prerequisite

Nil

CourseObjectives

1.To understand the basic concepts of surveying and construction materials.

2. To impart basic knowledge about building components.

CourseOutcomes

On the successful completion of the course, students will be able to

CO1. An ability to apply knowledge of mathematics, science, and engineering.	Apply
Co2. An ability to design and conduct experiments, as well as to analyze and interpret data .	Apply

Mapping with Programme Outcomes and Programme SpecificOutcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	S	-	-	-	-	-	-	-	-	-
CO2	S	М	L	S	М	S	-	-	-	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

Syllabus

UNIT - I	SURVEYING AND CIVIL ENGINEERING MATERIALS	15 - hours
Surveying	: Objects – types – classification – principles – measurements of distances –	- angles – levelling –
determinat	on of areas – illustrative examples.	
Civil Engi	neering Materials: Bricks – stones – sand – cement – concrete – steel section	ons.
UNIT - II	BUILDING COMPONENTS AND STRUCTURES	15 - hours
Foundatio	ns: Types, Bearing capacity – Requirement of good foundations.	
Superstru	cture: Brick masonry – stone masonry – beams – columns – lintels – n	coofing – flooring –
plastering -	- Mechanics - Internal and external forces - stress - strain - elasticity - T	ypes of Bridges and
Dams – Ba	sics of Interior Design and Landscaping.	

TextBooks

1."Basic Civil and Mechanical Engineering", VMU, (2017). Company Ltd., New Delhi,2009

ReferenceBooks

- 1. Ramamrutham S., "Basic Civil Engineering", Dhanpatrai Publishing Co. (P) Ltd., 2009.
- 2. Seetharaman S., "Basic Civil Engineering", AnuradhaAgencies.

Course Designers:

S.No.	Name of the Faculty	E-Mail ID
1.	S.SUPRIYA	jansupriyanair@gmail.com
2.	C.VAIDEVI	Vaidevi.c@gmail.com

17CS	FSA1		EG							Catego	ory	L	Т	Р	Cre	edit
17051	2201		ESS	SENTL	ALS O	F COM	IPUTI	NG		ES		3	0	0	3	3
This co emphas	EAMBLE course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and hasizing principles application packages. Studying the fundamentals concepts of Algorithms, to resolve the real world ication.															
PRER	QUISIT	ΓE – N	IL													
COU	RSE O	BJEC	ΓIVES													
1	To pro	ovide b	asic kn	owledge	e of har	dware a	and soft	tware co	mpone	nts of co	mputers.					
2	To int	To introduce and demonstrate various software application packages.														
3	To stu	To study Problem solving Techniques and program development cycle.														
4	To lea	Fo learn about various algorithm and identifying the algorithm efficiency.														
5	To lea	To learn different algorithm for various application.														
COUF	RSE O	SE OUTCOMES														
On the	succes	ssful co	omplet	ion of t	he cou	rse, stu	idents	will be	able to)						
CO1. 7	Го unde	rstand	the Bas	ic know	ledge o	on hardy	ware an	nd softw	are terr	ninologie	es.	Uı	nders	stand		
CO2. 7	Го Dem	onstrate	e the va	rious A	pplicat	ion Pac	kages l	ike MS-	word,	MS- Exc	el etc.	Al	ply			
CO3.T Technie		erstand	Program	n Devo	lvemen	t Cycle	and ap	ply vari	ous Pro	oblem So	lving	Aj	ply			
CO4.T	o analy	ze the	efficien	cy of A	lgorith	ns.						Aı	nalyz	ze		
CO5.T	o Imple	ement c	of Algo	rithms f	for vario	ous con	cepts.					Al	oply			
MAPI	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPE(CIFIC	OU	TCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	P	SO1	PSO2	PSO3
CO1	S	-	-	-	-	I	-	-	I	-	-	-		S	М	-
CO2	S	М	М	-	М	I	-	-	I	-	-	М		S	М	М
CO3	S	S	S	-	М	-	-	-	-	-	-	-		S	-	М
CO4	S	S S S - S S M M														
CO5	S	М	М	-	М	-	-	-	-	-	-	S		S	М	М
S- Stro	ong; M	Mediu	im; L-l	Low								•	•			

BASICS OF COMPUTER AND INFORMATION TECHNOLOGY: Computer – Generations, Types of Computers, Block diagram of a computer – Components of a computer system –Hardware and software definitions – Categories of software – Booting – Installing and Uninstalling a Software –Software piracy – Software terminologies – Applications of Computer – Role of Information Technology – History of Internet – Internet Services.

SOFTWARE APPLICATIONS: Office Automation: Application Packages – Word processing (MS Word) – Spread sheet (MS Excel) – Presentation (MS PowerPoint).

PROBLEM SOLVING METHODOLOGIES: Problems Solving Techniques - Program Development Cycle – Algorithm Development – Flow chart generation –Programming Constructs (Sequential, Decision-Making, Iteration) – Types and generation of programming Languages.

INTRODUCTION TO ALGORITHMS: Implementation of Algorithms – program verification – The efficiency of algorithms – The analysis of algorithms.

IMPLEMENTATION OF ALGORITHMS: Fundamental Algorithms: Introduction – Exchanging the values of two variables – Counting – Summation of a set of Numbers – factorial computation – Generation of the Fibonacci sequence – Reversing the digits of an integer.

TEXT BOOKS:

- 1. "Essentials of Computer Science and Engineering", Department of Computer Sciences, VMKVEC, Salem, Anuradha Publishers, 2017.
- 2. Dromey.R.G, "How to Solve it by Computer", Prentice-Hall of India, 1996.

REFERENCES:

1. Aho.A.V., Hopcroft.J.E and Ullman.J.D, "The Design and Analysis of Computer Algorithms", Pearson Education, 2004.

2. Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, 1997.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mrs.T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

17CSE	TS05	Р	ROGE	RAMM	IING I	N PYT	HON		CATE	GORY	L	Т	Р	CRE	EDIT
17001	2000								ES			0	4	3	
	MBLE			, · ,	1	D (1		1 1 1		6 1 1			1		•,
										ful dyna ython ha					
	ul oper					g with t	ippiicai	ion uor		y mon na	5 C VOI V	u on me	ne popu		1
	QUISI		- progr		8 10 01										
NIL	x														
COUR	SE OF	SIECT	IVES												
1				owled	ge on P	ython p	orogran	nming c	concept	s.					
2					-					and sets	•				
3						sing py	0		•						
4						s in pyt									
5						<u>,</u>		ile conc	epts an	nd CSV a	nd JSO	N.			
COUR	SE OU	TCON	MES	-		-			-						
On the	succes	sful co	mpletic	on of th	e cours	se, stud	ents wil	ll be ab	le to						
CO1. L	earn p	ython s	tateme	nts, co	mments	s and in	dentati	on, toke	ens, inp	out and o	utput	Unders	tand		
method				<u> </u>							_				
										Diction		Apply			
	-	solution	ns for c	complex	x progr	ams us	ing dec	ision m	aking a	nd loopi	ng	Apply.			
stateme		6	•		•.1 1	11 .1		1'1 1	1 1	1 .	1	A 1			
		e funct	tion pro	ograms	with a	ll the co	oncepts	like lar	nbda, d	lecorator	s and	Apply.			
generat		e the e	vcentio	n hand	ling pr	ograms	file co	ncent r	rogram	ne and		Apply			
underst							, me co	neept p	nogran	is and		дрргу			
			<u> </u>				IES AN	ND PR	OGRA	MME S	PECIF	IC OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PSC
														O2	3
CO1	S	M	M	M	M	-	-	-	-	-	-	-	M	M	М
CO2	S	M	M	M	M	-	-	-	-	-	-	-	S	M	M
CO3	M	S	S	S	M	-	-	-	-	-	-	-	M	M	M
CO4 CO5	S	S	S	S	M	-	-	-	-	-	-	-	S	S	M
י רט.	S	М	М	М	М	-	-	-	-	-	-	-	S	М	Μ
S- Stroi	3.6	1'													

UNIT-1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

ÚNIT-2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

UNIT-3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

UNIT-4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

UNIT-5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media,2014.
- 2. Programming With Python Book 'Himalaya Publishing House PvtLtd
- 3. "Dive Into Python" by MarkPilgrim

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COUF	COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID								
•												
1	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in								
2	Mrs. T. Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in								

17CSES	202		GRAM	MINC	INI DV/1		гар		Catego	ory	L	Т	Р	Credit	
1/CSES	505	PRO	GKAW	MING			LAD	-	ES		0	0	4	2	
PREA This lal comma	boratory	enable	s the stu	idents c	learly u	nderstai	nd the b	asic cor	ncepts of	f python,	control s	statement	s and file		
PRER	-														
	RSE OU														
On the	succes	sful co	mpletio	on of th	e cours	e, stud	ents wi	ll be at	ole to						
CO1 1	Learn S	yntax ai	nd Sema	intics ar	nd create	e Functi	ions in I	Python			1	Apply			
CO2. 1	Handle	Strings	and File	s in Pyt	hon.						1	Apply			
CO3. I Stateme	•	solution	s for co	mplex p	orogram	s using	decision	n makin	g and lo	oping	1	Apply			
	Underst	and List	ts. Dicti	onaries	in Pvth	on						Apply			
	Comput											Analyze			
MAPF	PING V	VITH	PROG	RAMN	IE OU	TCON	AES A	ND PR	OGRA	MME S	SPECIF	IC OUI	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	S	М	М
CO2	S	М	L	-	-	-	-	-	-	-	-	-	S	М	-
CO3	S	М	L	-	-	-	-	-	_	-	-	-	S	М	М
CO4	S	М	L	-	-	-	-	-	-	-	-	-	S	М	-
CO5	S	S	М	-	-	-	-	-	-	-	-	-	S	М	М
C Stro													2		111

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

REFERENCES:

- 1. Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2013.
- 3. Mark Lutz, "Python Pocket Reference", 5th Edition, O'Reilly Media, 2014.

COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1.	Mr. K.Karthik	Assistant Professor	CSE / AVIT	karthik@avit.ac.in							
2.	Dr. K. Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in							

170000	EN
17EEES82	А.

NGINEERING SKILLS PRACTICE LAB A. BASIC ELECTRICAL ENGINEERING

Category	L	Т	Р	
ES	0	0	2	

Apply

Apply

Analyze

0 0 2

Credit

1

PREAMBLE

It is a laboratory course which familiarizes the basic electrical wiring, measurement of electrical quantities and various types of earthing methods.

PRERQUISITE – NIL

COURSE OBJECTIVES

1	To learn the residential wiring and various types of electrical wiring.
2	To measure the various electrical quantities.
3	To know the necessity and types of earthing and measurement of earth resistance.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO 1: Implement the various types of electrical wiring.

CO 2: Measure the fundamental parameters of AC circuits.

CO 3: Measure the earth resistance of various electrical machineries.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L		S							L	L	М	L
CO2	S	М	S	S					М			М	L	L	М
CO3	L	S	L		S					L		L			

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

- 1. Residential house wiring using switches, fuse, indicator, lamp and energymeter.
- 2. Fluorescent lampwiring.
- 3. Stair casewiring.
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLCcircuit.
- 5. Measurement of energy using single phase energymeter.
- 6. Measurement of resistance to earth of an electrical equipment.

REFERENCES

1. Laboratory Reference Manual.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	EEE/VMKVEC	sathish@vmkvec.edu.in
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

17CMF881	17CMES81 ENGINEERING SKILLS PRACTICES LAB				T I	P C	redit							
17CME501	PA	PART B - BASIC ELECTRONICS ENGINEERING						G	ES	0	0 2	2	1	
PREAMBLE This course is electronic con	to prov	-			•			•	•					jects.
PRERQUISI	TE – N	IL												
COURSE OF	BJECT	IVES												
1 To fan	niliarize	e the ele	ectronic	compo	nents, ł	pasic el	ectronic	equipn	nents and	d solderii	ng techni	iques.		
2 To stu	dy the c	characte	eristics	of Diod	es, BJT	and FI	ET.							
3 To uno	derstand	the pr	inciples	of vari	ous dig	ital log	ic gates	•						
4 To uno	derstand	d the co	ncept o	f basic	modula	tion tec	chnique	s.						
COURSE OU	JTCON	⁄IES												
On the succes	sful cor	npletio	n of the	course,	studen	ts will	be able	to						
CO1. Constru	ct expe	riments	for PN	and Ze	ner dio	de char	acteristi	ics		τ	Jndersta	nd		
CO2. Demons	trate th	e funda	mentals	s of solo	lering t	echniqu	ies.			A	Apply			
CO3. Classify	the cha	aracteris	stics of	Diodes	, BJT a	nd FET				A	Apply			
CO4. Distingu	uish bet	ween ai	nplitud	e and fr	requenc	y modu	lation t	echniqu	ies.	A	Apply			
CO5. Verify t	he truth	tables	of logic	gates (AND, O	OR, NC	DT, NA	ND, NC	OR, XOR	k). A	Apply			
MAPPING W	VITH P	PROGR	RAMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPF	ECIFIC	OUTCO	MES		
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	М							М		М		М		
CO2 M	М	М						М		М		М		
CO3 S	М							М		М		-		
CO4 S	М							М		М		-	М	М
CO5 S	М	М						М		М		М	М	
S- Strong; M-	Mediun	n; L-Lo	W											

LIST OF EXPERIMENTS

- 1. Identifying ElectronicsComponents.
- 2. Practicing of Soldering and Desoldering.
- 3. Characteristics of PN junctionDiode.
- 4. Characteristics of Zenerdiode.
- 5. Input & Output characteristics of BJT.
- 6. Transfer characteristics of JFET.

- 7. Verification of LogicGates.
- 8. Study of AmplitudeModulation.
- 9. Study of FrequencyModulation.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE	mohanapriya@avit.ac.in

17CMES81	
----------	--

ENGINEERING SKILLS PRACTICE LAB PART A - BASIC CIVIL ENGINEERING

Category	L	Т	Р	Credit
ES	0	0	2	1

Preamble

Engineering Skills Practice is a hands-on training practice to Mechanical, Civil and Mechatronics Engineering students. It deals with fitting, carpentry, sheet metal and related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution

Prerequisite

NIL

CourseObjectives

1.To understand the basic concepts of surveying and construction materials.

2. To impart basic knowledge about building components.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Prepare the different types of fitting.	Apply
Co2. Prepare the different types of joints using woodenmaterial	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	L	L	L	L	L	L	L	L	L	L	L	-	-	-
CO2.	S	S	S	L	L	L	L	L	L	L	L	L	-	-	-

S- Strong; M-Medium; L-Low

Syllabus

LIST OF EXPERIMENTS:

Buildings:

1. Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects.

Plumbing Works:

- 2. Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in householdfittings.
- 3. Study of pipe connections requirements for pumps andturbines.
- 4. Preparation of plumbing line sketches for water supply and sewageworks.
- 5. Hands-on-exercise: Mixed pipe material connection Pipe connections with different joining components.
- 6. Demonstration of plumbing requirements of high-risebuildings.

Carpentry using Power Tools only:

- 7. Study of the joints in roofs, doors, windows and furniture.
- 8. Hands-on-exercise: Wood work, joints by sawing, planning andcutting.

TextBooks

1." Laboratory Reference Manual

Course Designers:

S.No.	Name of the Faculty	E-Mail ID
1.	S.Supriya	jansupriyanair@gmail.com
2.	C.VAIDEVI	Vaidevi.c@avit.ac.in

		ENG	GINE	ERING	5 SKI LAB	LLS P	RACT	ICE	Cate	gory	L	Т	Р	Cre	dit
17CM	IES81		B. B	ASIC ENG			CAL		E	S	0	0	2	1	
carpe	shop is a	ndry a	and we	aining ding r	practi elated	ce to N								itting, ight tool	s,
Prere	equisite	-NIL													
Cour	se Obje	ctive													
1	To perf					• •		0.1							
2	To utili														
3	To perf				-		0		U	ng pro	cesses.				
4	To dem	nonstra	te the	patterr	n using	found	lry proc	cesses	•						
Cour	se Outc	omes:	On th	ne succ	essful	comp	letion o	of the	cours	e, stud	ents w	vill be	able to		
CO1.							using N							Apply	
CO2.							sing wo							Apply	
CO3.							process		etal by	Arc W	/elding			Apply	
CO4.	Make	e use c	of diffe	erent ty	pes of	green	sand m	ould						Apply	
Марр	ping wit	h Pro	gramr	ne Out	tcome	s and l	Progra	mme	Specif	ic Out	tcome	5			
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PS
<u>CO1</u>	1	2	3 L	4	5	6	7	8	9	10	11	12	1 I	2	O3
CO1	S	M		L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	Μ	L	L	L	-	-	-	-	-	-	-	L	-	-
CO3	S	Μ	L	L	L	-	-	-	-	-	-	-	L	-	-
CO4	S	Μ	L	L	L	-	-	-	-	-	-	-	L	-	-
S- Sti	rong; M	-Medi	ium; I	L-Low											
Sylla															
LIST	OF EX			TS											
		Fittin	•												
		- Fittin	0												
							ece pat								
	-				-	lit piec	e patte	rn							
				Carpe											
			oint in Weldir	Carpei	iuy										
			Weldi												
Text	Books	Sint -	in crui												
1		SIC M	ECH/	ANICA	LEN	GINE	ERINO	G. LA	B MA	NUAI					
-	ence Bo			01	\										
1			al, Ba	sic Me	chanic	al Eng	ineerin	g, An	uradha	Publi	cations	s, Cher	inai		
2							Engine								
	se Desig	•	-												
S.No	Facul	lty Na	me	Desig	nation		Departure Departure C		t / Nar	ne of	Ema	il id			
1	Dr.	V.	K.	Assoc					IKVE	C	vkkr	ishnan	@vmkv	ec.edu.ir	<u>1</u>
	Krish			Profes			Mart	/ ^ ~ 7 77	г		01	haber	Dorit -	in	
2	B.SE BAB			Assist Profes			Mech	VAVI	1		seiva	idadu@	avit.ac.	.111	

17M	7MEES84 ENGINEERING GRAPHICS (Theory & Practice)							Categ	ory	L]	Г F		redit	
▲ /1 7Ⅰ		•							E	5	1	() 4		3
Prear	nble	1						1			1	1	I	1	
														physical g	
														raphics is	
n pro	posing	new j	product	throug	h drawii	ngs and	l interpr	eting d	ata fro	m exis	ting dr	awing	s. This	course dea	ls with
		1		projec	tions, se	ctional	views	and dev	velopm	ent of	surface	es.			
	quisite														
	se Obj														
1					graphic p										
2 3				Ū	aphic pr	U				and tr	ue sha	pe of t	he secti	ons.	
<u> </u>					ces of the					ofsir	nlaso	lide			
4 5					he ortho										
-					essful c								to		
					geomet	-								JNDERSTA	AND
201.			rojectio		Scomet				-0.1 103	511105	- apine	51			
CO2.	•	-	0		wing of	the ort	hograpl	hic proj	ections	s of po	ints, st	raight	A	Apply	
	line	s, plan	e surfac	ces and	solids.		0 1	1 0		•		e			
CO3.					of draw	0	the orth	ographi	c proje	ections	of sec	tioned	A	Apply	
a c :					the secti					a					
<u>CO4.</u>		-			of the s							1		Apply	
<u>CO5.</u>			.		ections (-		<u> </u>		-				Apply	
206.					h of the					0	•	rial vie	ew. A	Apply	
Aapp	oing wi	ith Pr	ogrami	ne Out	tcomes a	and Pr	ogrami	me Spe	cific O		-	DO1			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO
201	S	S	L	S	L	-	-	-	-	-	-	-	L	-	1
CO2	S	S	L	S	L	-	-	-	-	-	-	-	L	-	
CO3	S	S	L	S	L	-	-	-	-	-	-	-	L	-	
CO4	S	M	L	S	S	-	-	-	-	-	-	-	L	-	ļ
CO5	S	S	L	S	L	-	-	-	-	-	-	-	L	-	<u> </u>
$\frac{206}{100}$	S	S	L	S	L	-	-	-	-	-	-	-	L	-	
	0.	/ I- Me	dium; I	L-LOW											
yllal TAN		DVE	AND	FDFF	HAND	SVET	СНИ	r							
											evelop	ing vis	sualizati	on skills tl	nrough
					iews fro	m pict	orial vie	ews of	objects	•					
'KO'	JECTI	UN C	F POI	NTS, L	INES										
Projec	ction of	f point	s, Proje	ction o	f straigh	nt lines	located	in the	first qu	adrant	: inclir	ned to	both pla	anes –	
					d true in	clinatio	ons – ro	tating l	ine me	thod of	nly.				
PROJ	IECTI	ON C	F SOL	IDS											
roied	ction of	simn	le solid	s like n	risms n	vramid	ls cylin	der and	cone	when t	he avis	s is inc	lined to	any one r	eferenc
			f positic			yranno	, cynn			witch t		, 15 IIIC	meu te	any one r	
	-	~	-		DEVEL	OPMF	NT OF	SURF	ACES	5					
											nod + -	0.000	no nofe	onos nlas	and
														ence plane simple and	
					mids, cy				everop	ment (1 Iatel	ai sui l	aces 01	simple all	u
					RSPEC				N						
		. — т ш													

Princip	les of isometric View – is	sometric scale – isometri	ric view of simple soli	ds- Introduction to Perspective
project				
Text B				
1	Natarajan K V, "Engine	ering Graphics", Tata N	AcGraw-Hill Publishin	ng Company Ltd. New Delhi.
2	K.Venugopal and V.Pra	bhu Raja, "Engineering	g Graphics", New Age	International Private Limited.
3	K.R.Gopalakrishna"Eng	gineering Drawing" (Vo	ol. I & II), Subhas Pub	lications, 2014.
Refere	nce Books			
1	N.D. Bhat and V.M. Par	nchal, Engineering Grap	phics, Charotar Publis	hers 2013
2	E. Finkelstein, "AutoC.	AD 2007 Bible", Wiley	Publishing Inc., 2007	
3	R.K. Dhawan, "A text b	ook of Engineering Dra	awing", S. Chand Publ	lishers, Delhi,2010.
4	DhananjayA.Jolhe, "Eng Publishing Company Li		an Introduction to Au	ntoCAD", Tata McGraw Hill
5	G.S. Phull and H.S.Sand	lhu, "Engineering Grap	hics", Wiley Publicati	ons, 2014.
Course	e Designers			
S.No	Faculty Name	Designation	Department / Name of the College	Email id
1	Prof. N.Rajan	Associate Professor	Mech / VMKVEC	rajan@vmkvec.edu.in
2	Prof. M.SARAVANAN	Asst. Prof	Mech / AVIT	saravanan@avit.ac.in

170	SES06			PR	OGRAI	MMIN(G IN C			(Category	L	Т	P C	Credit
											ES	3	0	4	3
thestude program	a course	ngfound ogic.										three cred			ovide
NIL	QUIST	LE													
COUR	SE OBJI	ECTIV	ES												
1	To intr	oduce E	Basics of	C.											
2	To und	lerstand	Control	Structu	res & A	rrays.									
3	To lear	n String	g concep	t, Struct	ure and	Union i	n C.								
4	To und	lerstand	the con	cepts of	Function	ns and P	ointers.								
5	To und	lerstand	Memor	y and Fi	le mana	gement	concepts	s in C.							
COUR	SE OUT	COME	S												
On the s	successfu	il comp	letion of	the cou	rse, stud	ents wil	l be able	e to							
CO1: U	nderstan	d the ba	sics of C	C Data ty	pes, sco	pe of va	ariables,	differen	t types o	of Operate	ors	Understa	nd		
CO2: A program		concept	of Inpu	t/ Outpu	t functio	ons, Dec	ision ma	aking an	d Loop :	structures	in C	Apply			
CO3: D	emonstra	te the C	C program	ms for st	ring, arı	ays, uni	on & sti	ructure.				Apply			
CO4: D	evelop C	program	ms for fi	unctions	and poi	nters						Apply			
CO5: A	pply the	file mar	nagemen	t concep	ot to dev	elop the	C prog	rams.				Apply			
MAPP	ING WI	TH PR	OGRAN	AME O	UTCON	AES AN	D PRO	GRAM	ME SP	ECIFIC	OUTCO	MES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	M	-	S	-	-	-	M	-	S	M	S	M	-
CO2	S	М	М	-	S	-	-	-	М	-	S	S	S	М	М
CO3	S	М	М	-	S	-	-	-	М	-	S	S	S	М	М
CO4	S	М	М	-	S	-	-	-	М	-	S	S	S	М	М
CO5	S	М	М	-	S	-	-	-	М	-	S	S	S	М	М
S- Stror	ng; M-M	edium; l	L-Low												

BASICS OF C

Identifiers, variables, expression, keywords, data types, constants, scope of variables. Operators: arithmetic, logical, relational, conditional and bitwise operators – Special operators: size of () & comma (,) operator – Precedence and associatively of operators – Type conversion in expressions.

CONTROL STRUCTURES

Basic input/output and library functions: Single character input/output i.e. getch(), getchar(), getche(), putchar() – Formatted input/output: printf() and scanf() – Library functions (mathematical and character functions). Decision Making and Branching – Looping statements.

ARRAYS, STRING, STRUCTURE & UNION

Arrays – Initialization – Declaration – One dimensional and two dimensional arrays. Strings: Declaration – Initialization and string handling functions. Structure and Union: structure declaration and definition – Accessing a Structure variable – Structure within a structure – Union.

FUNCTIONS AND POINTERS

Function – Function Declaration – function definition – Pass by value – Pass by reference – Recursive function – Pointers – Definition – Initialization

MEMORY AND FILE MANAGEMENT

Static and dynamic memory allocation – Storage class specifier – Preprocessor directives. File handling concepts – File read – write – Functions for file manipulation: fopen, fclose, gets, puts, fprintf, fscan, getw, putw, fputs, fgets, fread, fwrite.

TEXT BOOKS

1.Balaguruswami. E, "Programming in C", TMH Publications, 1997

REFERENCES

COUDSE DESIGNEDS

1. Behrouz A. Forouzan & Richard F. Gilberg, "Computer Science A Structured Programming using C", Cengage Learning, 3rd Edition, 2007.

- 2. Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.
- 3. Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.
- 4. Subbura.R, "Programming in C", Vikas publishing, 1st Edition,2000

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@ vmkvec.edu.in
2	Mr.K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

1709	SES85			PROC	GRAM	MINC		AR		Categ	gory	L	T I	C	redit
1705	E303			INOC	JIANI			AD		F	ES	0	0 4	2	
PREA	MBLE														
is to gi		s on tra	ining to	o the stu	idents i	n under	standin	g and p		-			of this lab pts and a	-	
PRER	EQUIS	ITE	N	IL											
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletior	of the	course,	student	s will t	e able t	0						
	Vrite, co cation/a	-	-	link and	d execu	te C pro	ogram f	or the g	iven			Apply			
CO2. I and poi	•	and imp	lement	algorith	nms inv	olving	decisio	n struct	ures, lo	ops, array	/S	Apply			
CO3. U	Jse diff	erent da	ata struc	ctures fo	or solvi	ng the g	given pr	oblem i	using co	omputer		Apply			
CO4. (Create/u	pdate d	ata file	s.								Apply			
	Analyze n into s		•		•	•	gorithr	n by mo	odulariz	ing the		Analyze			
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	S	-	-	-	М	-	-	М	S	М	S
CO2	S	М	М	М	S	-	-	-	S	-	М	М	S	S	М
CO3	S	М	М	М	S	-	-	-	S	-	М	М	S	S	М
CO4	S	М	М	М	S	-	-	-	S	-	М	М	S	М	М
CO5	S	S	М	М	S	-	-	-	S	-	М	М	S	М	М
S- Stro	ng; M-N	Medium	n; L-Lo	W				<u> </u>		<u> </u>	1	1	1	1	1

LIST OF EXPERIMENTS

- 1. Basic programs to understand different types of data, operators and expressions.
- 2. Programs using control structures
 - i) Factorial of a number
 - ii) Fibonacci series
 - iii) Generating prime numbers
 - iv) Generating Armstrong numbers
 - v) Greatest common divisor

3. Programs using arrays

- i) Merging of arrays
- ii) Array order reversal
- iii) Selection sort
- iv) Bubble sort
- v) Insertion sort
- 4. Programs using strings
 - i) Palindrome checking
 - ii) String sorting
 - iii) Linear pattern search
 - iv) Text line editing
- 5. Programs using functions
- 6. Programs using pointers
- 7. Programs using structures
- 8. Programs using file structure

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. B. Sundharamurthy	Associate Professor	CSE / VMKVEC	sundharamurthy@vmkvecedu.in
2	Mr K.Karthik	Assistant Professor	CSE / AVIT	karthik@avit.ac.in

1708	CC01			ПАТ	а стр		URES		C	CATEG	ORY	L	Т	Р	CRI	EDIT
1705				DAT	4 9 I R		UKES			CC	l ,	3	0	4		3
PREA	MBLE	E														
		ims at	unders	tanding	the bas	sic con	cepts in j	prograi	nming	structur	es, linea	ar struc	tures a	and no	on linea	r
structu																
PRER NIL	QUIS	TE														
	RSE O	BJEC	FIVES													
1.	To rem	ember	and ur	nderstan	d the b	asic co	ncepts ir	n linear	struct	ures						
2.	To lear	n abou	t tree s	tructure	s.											
3.	To und	erstanc	about	balance	ed trees	5										
4.	To lear	n abou	t hashi	ng and s	sets.											
5.	To lear	n and ı	underst	and abo	ut grap	hs										
COU	RSE O	UTCO	MES													
On the	succes	ssful co	ompleti	ion of th	e cours	se, stud	lents will	l be ab	e to							
CO1. I	Remem	ber the	e basic	concept	s in lin	ear stru	uctures				Un	derstar	ıd			
CO2. I	Learn a	bout tr	ee stru	ctures a	nd tree	travers	sals				Ap	ply				
CO3. 1	Underst	tand ab	out ba	lanced t	rees						Ap	ply				
CO4. I	Learn a	bout h	ashing	and sets	5.						Ap	ply				
CO5. I	Learn a	nd und	lerstan	d about	graphs						Ap	ply				
MAPI	PING V	VITH	PROC	GRAMN	AE OU	TCON	MES AN	D PR	OGRA	MME S	PECIF	IC OI	JTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S	М	М	-	-	-	-	-	-	-	-	М	S	5	S	S
CO2	S	М	М	М	М	-	-	-	-	-	-	М	Ś	5	S	S
CO3	S	М	L	М	М	-	-	-	-	-	-	М	2	5	S	М
CO4	S	М	М	М	М	-	-	-	-	-	-	L		5	S	М
CO5	S	М	L	М	М	-	-	-	-	-	-	М	5	5	S	М
S- Stro	ong; M-	Mediu	ım; L-I	Low	<u>I</u>			1	l			1	1			1

SYLLABUS Linear Structures

Abstract Data Types (ADT) – List ADT – array-based implementation – linked list implementation – cursor-based linked lists – doubly-linked lists – applications of lists –Stack ADT – Queue ADT – circular queue implementation – Applications of stacks and queues.

Tree Structures

Tree ADT – tree traversals – left child right sibling data structures for general trees and graphs.

Balanced Trees

 $AVL\ Trees-Splay\ Trees-B-Tree\ -\ heaps-binary\ heaps-applications\ of\ binary\ Heaps\ .$

Hashing and Set

Hashing – Separate chaining – open addressing – rehashing – extendible hashing -Disjoint Set ADT – dynamic equivalence problem – smart union algorithms – path compression – applications of Set.

Graphs

Definitions – Topological sort – breadth-first traversal - shortest-path algorithms –minimum spanning tree – Prim's and Kruskal's algorithms – Depth-first traversal – bi-connectivity – Euler circuits – applications of graphs.

TEXT BOOKS:

1. Mark A. Weiss, "Data Structures and Algorithm Analysis in C (2nd Edition), Pearson Education.

REFERENCES:

- 1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Pearson Education, First EditionReprint.
- 2. R. F. Gilberg, B. A. Forouzan, "Data Structures", Second Edition, Thomson India, Edition

COU	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. R. Jaichandran	Associate Professor	CSE	jaichandran@avit.ac.in
2.	Dr.V.Amirthalingam	Associate Professor	CSE	amirthalingam@vmkvec.edu.in

170000	0		БАТ	CTD		рест	۸D		Cate	egory	L	Т	Р		Credit		
17CSCC2	20		DATA	4 SIK	UCTU	KES L	AB		0	CC	0	0	4		2		
PREAME	BLE																
This labor					clearly	under	stand tl	he conc	cepts of	data str	uctures.	Also stu	idents c	an impl	ement the		
searching		-	lgorith	ms.													
PRERQU NIL	JISIT	E															
COURSE	OUT	ГСОМ	ES														
On the suc	ccessf	ul com	pletion	of the	course	, studer	nts will	be abl	e to								
CO1. Dev	velop	algorith	ms for	the co	ncepts	of data	structu	ures.				Apply					
CO2. Abl	e to A	apply se	earchin		Apply												
CO3. Con	struct	t impler	nentati	ons for	Abstra	act Dat	а Туре	s (AD	Γ) using	g		Apply					
appropriat	e Dat	a Struc	tures									Аррту					
CO4. Ass			•					•	-	ed							
on the tim		space of	comple	xities of	of diffe	rent op	eration	is on th	e			Analyze	•				
data struct																	
CO5. Imp as sub-pro		-		which u	ise sort	ing, se	arching	g and/o	r select	tion		Apply					
MAPPIN		-		A N/[N/[]		COM	FS AN			MME S	DECIE		COME	2			
	0 11		NOOK			COM		DIK	JUNA				COME	20			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	М	М	М	М	-	-	-	-	-	-	-		М	М	М		
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М		
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М		
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S		
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S		

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS:

- 1. Exercises using Objects, Classes, Inheritance
- 2. Operator Overloading and Polymorphism
- 3. Array implementation of List Abstract Data Type (ADT)
- 4. Linked list implementation of List ADT
- 5. Cursor implementation of List ADT
- 6. Array implementations of Stack ADT
- 7. Linked list implementations of Stack ADT
- 8. Queue ADT
- 9. Search Tree ADT Binary Search Tree
- 10. Heap Sort
- 11. Quick Sort

REFERENCES:

- **1.** Laboratory Reference Manual.
- 2. Balaguruswami. E, "Programming in C", TMH Publications, 1997
- 3. Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.
- 4. Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.
- 5. Subbura.R, "Programming in C", Vikas publishing, 1st Edition, 2000.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Jaichandran	Associate Professor	CSE / AVIT	jaichandran@avit.ac.in
3	Dr. M. Nithya	Prof & Head	CSE / VMKVEC	nithya@vmkvec.edu.in

17050004		COM		ADCII	TTEOT			Cate	gory	L	Т	Р	Cred	it
17CSCC04		COMP	UIEK	АКСН	IIECI	UKE		С	С	3	0	0	3	
PREAMBLE	:													
This course is														
concerned with														miliar
with digital lo			nal desi	ign of a	rithmet	ic and l	ogic un	it that i	s capable	of perf	orming	floating	point	
arithmetic ope														
-														
COURSE O														
	n about		•		essors.									
	n about													
									l addressi	ng mod	es.			
	the know	0	of algo	rithms t	to solve	arithme	etic pro	blems.						
COURSE O														
On the succe					-		will be	able to)					
CO1 Explain	about c	ompute	r organ	ization	compoi	nents.					Under	stand		
CO2 Comput	e simple	e arithm	etic op	erations	s for fix	ed-poin	t and f	loating-	point		Apply			
addition, subt	raction,	multipl	ication	& divis	sion.									
CO3 Design					0						Analy	se		
CO4 Constru						Ũ			f operatio	ons.	Analyz	ze		
CO5 Demons				n for a g	given se	t of spe	cificati	ons			Analyz			
CO6 Explain		Ũ	A								Under			
MAPPING	WITH	PROC	GRAM	ME O	UTCC	OMES .	AND I	PROG	RAMM	E SPE	CIFIC	COUTC	OMES	5
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	М	-	М	-	-	-	-	-	-	-	L	М	М	-
CO2 M	М	М	М	-	-	-	-	-	-	-	L	М	М	-
СО3 М	М	S	М	-	-	-	-	-	-	-	-	S		-
CO4 S	М	М		-	-	-	-	-	-	-	-	S	М	-
CO5 S	-	М	L	-	-	-	-	-	-	-	-	S		-
CO6 M	М	М	S	-	-	-	-	-	-	-	L	М	М	-
S- Strong; M	-Mediu	ım; L-l	LOW											

INTRODUCTION

Computer Organization- Main memory – CPU operation – Interrupt concept – I/ O techniques – Bus concept – Computer performance factors – System performance measurement- High performance techniques – Comparison of Architecture and Organization – Study of Salient features and architectures of Advanced processors (80286, 80386, 80486, Pentium).

PROCESSOR DESIGN AND CONTROL UNIT

Goals – Design process –Data path organization – Main memory interface – Data path for single instructions- Floating point unit data path – Role of control unit – Reset sequence – Interrupt recognition and servicing – Abnormal situation handling – Hardwired control unit – Micro programmed control unit.

MEMORY DESIGN & MEMORY MANAGEMENT

Memory types – Functional and usage modes – Memory allocation- Multiple memory decoding – Memory hierarchy – Instruction pre fetch – Memory interleaving – Write buffer – Cache memory – Virtual memory – Associative memory.

INTRA SYSTEM COMMUNICATION AND I/O

I/O controller & driver- Case study: Hard disk controller in IBM PC – I/O ports and bus concepts – Case study: Keyboard interface – Bus cycle – Asynchronous and Synchronous Transfer – Interrupt handling in PC – I/O techniques in PC – Case Study : RS 232 interface – Modern serial I/O interface – Bus arbitration techniques – Hard disk interface in PC.

ADVANCED ARCHITECTURE

Classification of parallelism – Multiple functional units – Pipelining – Vector computing – array processors –High performance architecture – RISC systems – Super scalar architecture – VLIW architecture – EPIC architecture – Multiprocessor systems – Cache coherence problem – Fault tolerance.

TEXT BOOKS:

1. WilliamStallings, "Computer OrganizationAndArchitecture–DesigningFor Performance", SixthEdition, Pearson Education, 2007.

REFERENCES:

- 2. Govindarajulu, "Computer Architecture and Organization Design principles and applications", Tata McGraw Hill publications, NewDelhi.
- 3. David A. Patterson And John L. Hennessy, "Computer Organization And Design: The Hardware/Software Interface", Fifth Edition, Morgan Kaufmann, 2013.
- 4. John P. Hayes, "Computer Architecture and Organization", Third Edition, Tata McGraw Hill, 1998.
- 5. A.K.Ray & K.M.Bhurchandi, "Advanced Microprocessors and peripherals- Architectures, Programming and Interfacing", McGraw-Hill Education (India), 2013 reprint.

S. No.	Name of the faculty	Designation	Department	Mail Id
1.	Mr. G. Seenivasan	Assistant. Professor	CSE	seenivasan@vmkvec.edu.in
2.	Mrs. S.Leelavathy	Assistant. Professors (GII)	CSE	leelavathy@avit.ac.in

17CSCC02	OBJECT ORIENTED	Category	L	Т	Р	Credit
	PROGRAMMING	CC	3	0	4	3

PREAMBLE

This syllabus is intended for the Computer science students and enables them to learn Object Oriented Programming and the design of computer solutions in a precise manner. The syllabus emphasizes on OOP concepts, Functions, Polymorphism, Inheritance and I/O. The intention is to provide sufficient depth in these topics to enable candidates to apply Object Oriented Programming approach to programming. The modules in the syllabus reflect solving general problems via programming solution. Thus, modules collectively focus on programming concepts, strategies and techniques; and the application of these toward the development of programming solutions. PRERQUISITE NIL **COURSE OBJECTIVES** To learn about the syntax and semantics of C++ programming language 1. 2. To learn about the concepts of object oriented programming. 3. To determine how to reuse the code, Constructors and member functions 4. To Analyse how to reduce the coding by applying overloading concepts 5. To Analyse how to reuse the code, how to verify and validate the coding **COURSE OUTCOMES** On the successful completion of the course, students will be able to CO1. Construct object-oriented programs for a given scenario using the concepts of Apply abstraction, encapsulation, message-passing and modularity CO2. Construct object-oriented programs for a given application by using Apply constructors CO3. Develop object-oriented programs for a given application using the concepts of Analyze compile-time and run-time polymorphism CO4. Develop object-oriented applications through inheritance concepts Analyze CO5. Construct object-oriented applications for a given scenario using files. Sting Analyze handling and to handle exceptions MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES PO3 PO11 PO5 PO9 PO10 PO12 COS PO1 **PO2** PO4 PO6 PO7 PO8 PSO1 PSO₂ PSO3 CO1 М М М М М Μ L Μ Μ Μ М М М Μ Μ Μ L Μ Μ М CO₂ ----_ L Μ М S Μ Μ S Μ М CO3 S CO4 S Μ Μ Μ S L S М Μ S L CO5 S М Μ М М Μ М М S

S- Strong; M-Medium; L-Low

INTRODUCTION TO FUNDAMENTAL CONCEPTS OF OOP

Object Oriented Paradigm: Elements of Object Oriented Programming – Working with classes, Classes and Objects-Class specification- accessing class members- defining member functions - Passing and returning objects – Array of objects - inline functions - accessing member functions within class - Static members.

OBJECT INITIALIZATION AND FRIEND FUNCTION

Constructors - Parameterized constructors - Constructor overloading. Copy constructor, Destructors, Default arguments - new, delete operators - "this" pointer, friend classes and friend functions.

OVERLOADING AND GENERIC PROGRAMMING

Function overloading – Operator overloading- Non-over loadable operators- unary operator overloading- operator keywordlimitations of increment/decrement operators- binary operator overloading- Generic programming with templates-Function templates- class templates.

INHERITANCE AND VIRTUAL FUNCTION

Inheritance-Base class and derived class relationship-derived class declaration-Forms of inheritance- inheritance and member accessibility, abstract class, virtual functions, pure virtual function.

EXCEPTION HANDLING AND STREAMS

Exception handling - Try Catch Throw Paradigm - Uncaught Exception- Files and Streams-Opening and Closing a file- file modes- file pointers and their manipulation, sequential access to a file-random access to a file-Reading and Writing – Exception handling. String Objects.

TEXT BOOKS:

- 1. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.
- 2. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill, 2008.
- 3. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. Edition, 2008.
- 4. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3rd edition2008.
- 5. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 6. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

REFERENCES:

- 1. H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2005.
- 2. 2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

COUF	RSE DESIGNERS			
S.No	Name of the faculty	Designation	Department	Mail Id
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr.S. Muthuselvan	Assistant Professor Gr. II	CSE	muthuselvan@avit.ac.in

										Categ	gory	L	T P	Cre	edit
17C	SCC21	0	BJEC'	Г ORII	ENTED	PRO(GRAM	MING	LAB	CC	2	0	0 4		2
With a														of object or g and analy	
PRER NIL	QUISIT	Έ													
	SE OB.	JECT	IVES												
1.	To be	capabl	le of ex	plainin	g proce	dure as	well as	object	oriented	d program	nming o	concept	s & their	difference	s.
2.	To be	able to	o imple	ment in	line and	l friend	functio	on very	well.						
3.	To be	famili	ar with	how to	make p	rogram	is using	functio	on overl	oading &	k operat	or over	loading		
4.	To get	the ca	apabilit	y to imp	olement	the dif	ferent t	ypes of	inherita	ance & d	one pro	blems r	elated to	them	
COUF	SE OU	ГСОМ	AES												
On the	success	ful cor	npletio	n of the	course	, studer	nts will	be able	to						
	Construc	t obje	ct-orien	ited pro	grams f	or a giv	ven scer	nario	using t	he	Analys	is			
concep		on cul	otion n	2000000	naccin	a and m	odular	tx ,							
	tion, end Develop								using th	e	Apply				
concep		J		1.0		0	TT		0	-	rr J				
	e-time a														
	Construc strating	t obje	ct-orien	ited pro	grams f	for a give	en app	lication	by		Apply				
	nter-relat	ionshi	in bet	ween	classes	using	g inheri	tance ar	nd aggre	egation.					
	Develop									8	Apply				
	Construc	t obje	ct-orien	ited app	lication	s for a	given s	cenario	to pers	ist data	Apply				
using f															
	ject-seria ING W			RAMM	E OUT	COMI	ES ANI	D PRO	GRAM	ME SPI	ECIFIC		COMES		
COS	PO1	PO2	-	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11			1 PSO2	PSO3
CO1	М	М	М	М	S	-	-	-	-	-	-	-	M	M	M
CO2	М	М	М	М	М	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	S	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	М	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	М	-	-	-	-	-	-	-	М	М	S
			n; L-Lo												

LIST OF EXPERIMENTS

1. Write a program to illustrate function overloading feature

2. Write a program to illustrate the overloading of various operators Ex. Binary operators, Unary operators, New and Delete operators.

3. Write a program to illustrate the use of following functions: a) Friend functions b) Inline functions c) Static Member functions d) Function with default arguments

4. Write a program to illustrate the use of destructor and the various types of constructors (no arguments, constructor, constructor with arguments, copy constructor etc).

5. Write a program to illustrate the various forms of inheritance: Ex. Single, Multiple, multilevel, hierarchical inheritance etc.
 6. Write a program having student as on abstract class and create many derived classes such as Engg. Science, Medical, etc. from student's class. Create their objects and process them.

7. Write a program to illustrate the use of virtual functions.

8. Write a program to illustrate the use of virtual base class.

9. Write a program to illustrate file handling operations: Ex. a) Copying a text files b) Displaying the contents of the file etc.

10. Write a program to illustrate how exceptions are handled (ex: division-by-zero, overflow and underflow in stacketc).

REFERENCES:

1. H.M. Deitel and P.J. Deitel, C How to program Introducing C++ and Java, Fourth Edition, Pearson Prentice Hall, 2010.

2. B. Stroustrup, "The C++ Programming language", Third edition, Pearson Education, 2004.

3. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2007.

4. K. R. Venugopal, Rajkumar, T. Ra vishankar, Mastering C++, 4th Edition, Tata McGraw 2. Hill, 2008.

5. Budd T., An Introduction to Object-oriented Programming, Addison-Wesley 3rd 4. edition, 2008.

6. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 3rd edition2008.

7. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.

8. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009.

S.No	Name of the faculty	Designation	Department	Email Id
1.	Dr. K. Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in
2.	Mr.K.Karthik	Assistant Professor	CSE / AVIT	karthik@avit.ac.in

17CSC	C06		DESI	NT A NT	D ANA	I Vete	OF		Cate	gory	L	Т	Р	Cred	it
17050			DESIC		D ANA DRITH		OF		C	С	3	0	4	3	
PREAM		oduces	studen	ts the o	oncente	of desi	an and	analyci	s of alm	orithms	On com	letion c	of this cour	rea etudan	te will
be able t	,	ouuces	studen		Jucepts	of desi	gii and	anarysis	s of algo	oriums.	Jii com		or uns cou	se studen	ts will
		e algor	rithm ar	alysist	echniqu	es.									
								ntechnic							
			ient alg	orithms	for sol	ving en	gineeri	ng prob	lems by	v using ap	opropria	te algori	thm desig	n paradigı	nsand
				CTDI	CTUDI	26									
PRERE	-			SIRU		EQ									
				dent wi	th good	nrogra	mmino	design	method	ls nartici	ılarly To	n- Dow	n design.		
2.										ts, trees,		<u></u>	ii desigii.		
3.								above a			0 1				
4.					1		0	y to tree	0						
5.					-				-	=	e various	algorit	nms from	this persp	ective
COURS	SE OU	TCON	AES												
On the s		•													
CO1. A	nalyse t	he corr	ectness	of algo	rithms u	using in	nduction	n and lo	op inva	riants.		Analyze			
	•		st-case,	best-ca	se and a	average	e-case r	unning	time of	algorithr	ns 4	Analyze			
using asy												. 1			
								using a	mortize	ed analys	is 4	Analyze			
techniqu								vide and	conque	er, greedy	v and	Analyze			
dynamic						urgins		iue anu	conque	n, greeuy		maryze			
$\frac{CO5}{CO5}$. In		-	-	_		he appl	ication	of the d	lifferent	t algorith	m 4	Apply			
design pa			e		1	11				e					
CO6. A1	•		•		of an alg	gorithm	is affe	cted bas	ed on th	he choice	of	Analyze			
data stru	ctures the	ne algo	rithm u	ses.											
MAPPI	NG W	ITH F	PROG	RAMN	1E O U	TCON	MES A	ND PI	ROGR	AMME	SPEC	IFIC O	UTCOM	IES	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO2	PSO
CO1	S	М	М	-	-	-	-	-	-	-	-	-	S	М	М
CO2	S	М	М	-	-	-	-	-	-	-	-	-	S	S	М
CO3	М	М	S	-	-	-	-	-	-	-	-	-	S	М	М
CO4	S	М		-	-	-	-	-	-	-	-	-	S	S	М
CO5	М	М	М	-	-	-	-	-	-	-	-	-	S	М	S
CO6	М	М	М	-	-	-	-	-	-	-	-	-	S	М	М
S- Stron	g; M-N	/lediun	n; L-Lo	OW			<u> </u>	1	1	L	1	1	_1	1	

SYLLABUS INTRODUCTION TO ALGORITHMS

The role of algorithms in computing, Growth of functions, Asymptotic notations, Designing and Analyzing algorithms-an Introduction using insertion sort. Review on the Math needed for algorithm design and analysis.

DIVIDE AND CONQUER

Solving recurrences – The Substitution method, Recurrence Tree method and Master's method, Multiplying large integers, Binary Search, Sorting [Merge Sort and Quick Sort], Selection in linear time [Expected and Worst-case], Strassen''s algorithm for Matrix Multiplication, The maximum sub-array problem.

GREEDY ALGORITHMS

Characteristics of Greedy algorithms, The problem of making change, Greedy algorithms for Scheduling, Minimum Spanning Trees – Kruskal's Algorithm and Prim's Algorithm, Greedy Algorithms for finding the shortest paths in a Graph, The Knapsack problem Amortized Analysis: The accounting method, The potential method.

DYNAMIC PROGRAMMING

Calculating the binomial co-efficient, The problem of making change, The Knapsack problem, Chained matrix multiplication, Finding the shortest paths in a Graph, Reformulating Dynamic programming algorithms using recursion and memory functions.

GRAPH ALGORITHMS

Depth-first search & Breadth-First Search, Flow Networks, Topological sort, Strongly connected components Computational Complexity: Classes P and NP, Polynomial reductions, Classes NP-Complete and NP-Hard. Heuristics: Graph Coloring problem, Travelling Sales Person problem.

TEXT BOOKS:

1. Charles E. Leiserson, "Thomas H. Cormen, Ronald L. Rivest, Clifford Stein – Introduction to Algorithms", Third edition, PHI, 2010

REFERENCES:

- 1. Gilles Brassard and Paul Bratley, "Fundamentals of Algorithmic", PHI,2000.
- 2. Sara Baase Computer algorithms: Introduction to Design and Analysis -, Addison Wesley publication, 1998.

COURS	SE DESIGNERS			
S. No.	Name of the faculty	Designation	Department	Email Id
1.	Dr. S. Rajaprakash	Associate Professor	CSE	srajaprakash@avit.ac.in
2.	Mr. M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

17CS	CC23				TODIT	HM LA	D		C	ategory	L	Т	Р	Cr	edit
1705	CC25			ALC	JUKII		4D			CC	0	0	4		2
PREA	AMBLE											1	1L		
The ob	ojective o	of this la	boratory	/ course	is to en	able stu	dents to	solve al	gorithm	ic proble	ms by	appropri	ately mo	odeling	the
proble	m, choos	sing and	or desig	ning ef	ficient d	lata struc	ctures ar	nd algor	ithms to	meet the	proble	m const	raints an	ıd	
impler	nenting	he algoi	rithm in	C/C++.											
PREF	REQUI	SITE													
Data S	tructure	s Lab (1'	7CSCC2	20)											
COU	RSE OI	BJECT	IVES												
1.	To un	derstand	d concep	ots abou	t search	ing and	sorting	echniqu	les.						
2.	To un	derstand	l basic c	oncepts	about s	tacks, q	ueues, li	sts, tree	s and gr	aphs.					
3.	To un	derstand	ling abo	ut writi	ng algoi	rithms ar	nd step l	by step a	pproach	n in solvi	ng prot	lems wi	th the h	elp of	
	funda	mental o	lata stru	ctures.											
COU	RSE O	UTCON	MES												
On the	e success	ful com	pletion of	of the co	ourse, stu	udents w	ill be al	ole to							
CO1.	Develop	efficier	nt algori	thms an	d imple	mentatic	on schen	nes for s	olving a	ı given		Apply			
proble	m using	appropr	iate data	structu	res and	design to	echniqu	es like d	livide an	d conque	er,				
greedy	, branch	and bot	and and	dynami	c progra	mming.									
CO2.	Compar	e the sui	tability	of sever	al cand	idate dat	a struct	ures, alg	orithms	and		Analyze	e		
impler	nentatio	n scheme	es to sol	ve a pro	blem, b	ased on	the time	e, space	comple	xities and	b				
proble	m constr	aints im	posed.												
	Model,	mpleme	ent and e	valuate	the algo	orithms of	designed	d using a	a high –	level		Analyze	e		
CO3.		anguage			C		Ū.	Ū.	C						
CO3. progra	mming l	angaage													
	mming l	unguuge							~						
progra	mming I		PROGE	RAMM	E OU	ГСОМ	ES AN	D PRO	GRAN	IME SP	PECIF	IC OU'	ГСОМ	ES	
progra MAP COS		VITH I PO2	PROGI PO3	PO4	E OUZ PO5	FCOM PO6	ES AN PO7	D PRO PO8	GRAN PO9	IME SP PO10	PECIF PO11	IC OU' PO12	PSO1	PSO2	PSO3
progra MAP COS CO1	PING V PO1 M	VITH I PO2 M	PO3 S	PO4 M	PO5 -	PO6 -		PO8 -		PO10 -			PSO1 M	PSO2 M	PSO3 S
progra MAP COS	PING V PO1	VITH I PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	

17AIC	CC01)BLEN THON						Categ	gory	L	Т	Р	Cred	lit
					Practio				C	С	3	0	2	4 Atte computer amming and onts several terrestriction in the several terrestriction in terrestriction in terrestriction in terrestrictin terrestriction in terrestevee terrestrictio	
PREAN	ABLE:														
		lesigned	l to intro	oduce b	asic pro	oblem s	olving	and pro	gram de	esign skil	ls that a	re used t	o create c	omputer	
									esign st	rategies a	ind tools	, commo	on algorith	nms used	in
compute PRERI				tary pro	ogramm	iing tec	nniques	5.							
	· ·														
COUR 1.				solutio	ne to eii	mnle co	mnutat	ional pr	oblams						
2.						-	-	s and ex							
2. 3.		• • •							-	for solvi	ng prob	lems			
<i>3</i> . 4.		•	.					.	•		•		ound data	1	
т. 5.		-					-			ython for	-				
COUR		-	-	11105, 02	Aception	n, mou		r puekug	,es m r .	ython for	sorving	problem	15.		
On the s				of the c	ourse, s	tudents	will be	e able to	1						
СО1. Т	'o under	stand a	nd deve	lop alge	orithmic	c soluti	ons to s	imple c	omputa	tional pro	blem.	Analyze			
CO2 T	o expla	ain prog	grams u	sing sin	nple Py	thon sta	atement	s and ex	pressio	ons.	1	Analyze			
CO3. T problen	-	ain con	trol flo	w and	functio	ons con	cept in	Pytho	n for sc	olving	1	Analyze			
CO4. C dynamic		•		•	U	adigms	like div	vide and	conque	er, greedy	and A	Analyze			
	'o use F	ython	-			s, tuple	es & di	ctionar	ies for	represen	ting 4	Apply			
	o use E		iles, exo	ception.	, modul	es and j	package	es in Py	thon for	solving	1	Analyze			
MAPP	ING W	итн і	PROG	RAMN	AE OI	TCO	MES A	ND PI	ROGR	AMME	SPECI	IFIC O	IITCOM	IES	
COS										PO10				PSO2	PSO
CO1	S	М	L	-	-	L	-	-	-	-	-	L	М		М
CO2	S	М	L	-	М	L	-	-	-	-	-	L	S	М	М
CO3	S	М	L	-	М	L	-	-	-	-	-	L	М	М	М
CO4	S	М	L	-	М	L	-	-	-	-	-	L	S	S	М
CO5	М	М	L	L	М	L	-	-	-	-	-	L	S	М	М
	М	М	L	-	М	L	-	-	-	-	-	L	М	M	М
CO6															

UNIT-1 INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

UNIT-2 DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

UNIT-3 CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-elif-else-Nested if iterative control structures-while loop, for loop and range.

UNIT-4 FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

UNIT-5 EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

TEXT BOOKS:

- 4. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition, O'Reilly Media, 2014.
- 5. Programming With Python Book 'Himalaya Publishing House PvtLtd
- 6. "Dive Into Python" by MarkPilgrim

REFERENCES:

- 4. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 5. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.

Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COUR	SE DESIGNERS			
S. No.	Name of the faculty	Designation	Department	Email Id
1.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2.	T.Narmadha	Assistant Professor	CSE	Narmadha@vmkvec.edu.in

17CSCC03		ПАТ	ABAS	F MAN	JAGEN	/FNT	SYSTEN	м	Cate	gory	L	Т	Р	Cr	edit
1/050000		DAI	ADAD.		HOLM		BIBIE		С	С	3	0	4		3
Systems, the	ims a e me	ethod	and n	nodel	to stor	e data	and h	ow to	o mani	ipulate t	hem th	rough	query		
PREREQU NIL	ISIT	[E:													
COURSE ()BJI	ECTI	VES												
	crib	e a rela	ational	databas	e and o	bject-o	riented d	atabas	e						
				-					•						
								U							
								-			propriate	e solutio	ons.		
	0			ıbase sy	vstem fo	or a give	en real w	orld p	roblem						
	course aims at facilitating the student to understand the various concepts and functionalities of Database Management erms, the method and model to store data and how to manipulate them through query languages, the ctivedesigning of relational databaseandhow the systemmanages the concurrent usage of data inmultiuser romment. Course aims at facilitating the student to understand the various concepts and functionalities of Database Management trouge of datainmultiuser romment. Construct S Create, maintain and manipulate a relational database using SQL. Describe a relational database and object-oriented database.														
			1												
CO1. Illustra	te th	ne data	base d	esign f	or appli	cations	s and use	e of El	R Diag	ram.			Unde	rstand	
				e relatio	nal data	abase u	sing Stru	ctured	Query	Languag	ge		Ap	ply	
constraints li	ke in	tegrity	and va	lue con	straints			•	•	C	us		Ap	ply	
															PROP
							P07			PO10	_	_			
CO1 S		М	М	М	М	-	-	-	-	-	М	S	5	М	S
CO2 M		М	М	L	М	-	-	-	-	-	М	М	S	М	S
CO3 M		М	S	М	М	-	-	-	-	-	М	L	S	М	S
CO4 S		М	М	М	L	-	-	-	-	-	М	М	S	S	S
CO5 S		М	М	М	М	-	-	-	-	-	М	М	S	М	S
S- Strong; M	Med	lium; I	L-Low				<u> </u>				1	1	1		

SYLLABUS INTRODUCTION

Database System Applications - Views of data - Data Models - Database Languages - Modification of the Database - Database System Architecture - Database users and Administrator- Introduction to relational databases - Structure of Relational Databases - Entity-Relationship model (E-R model) - E-R Diagrams.

RELATIONAL APPROACH

The relational Model - Additional & Extended Relational - Types of Keys - Relational Algebra - Null Values - Domain Relational Calculus - Tuple Relational Calculus - Fundamental operations - Additional Operations- SQL fundamentals - Structure of SQL Queries - SQL Data Types and Schemas - Nested Sub queries - Complex Queries - Integrity Constraints - Triggers - Security - Advanced SQL Features - Embedded SQL- Dynamic SQL- Views - Introduction to Distributed Databases and Client/Server Databases.

DATABASE DESIGN

Overview of the Design Process - Functional Dependencies - Non-loss Decomposition - Functional Dependencies - Normalization and its Types - Dependency Preservation - Boyce/Codd Normal Form- Decomposition Using Multi-valued Dependencies and Fourth Normal Form - Join Dependencies and Fifth Normal Form - Entity Sets and its Types.

TRANSACTION & CONCURRENCY CONTROL

Transaction Concepts - Transaction State - Transaction Recovery - ACID Properties - System Recovery - Media Recovery - Two Phase Commit - SQL Facilities for recovery -Advanced Recovery Techniques - Buffer Management - Remote Backup Systems - Concurrency Control - Need for Concurrency - Locking Protocols -Two Phase Locking - Internet Locking - Deadlock Handling - Serializability - Recovery Isolation Levels - SQL Facilities forConcurrency.

STORAGE STRUCTURE

Introduction to Storage and File Structure - Overview of Physical Storage Media - Magnetic Disks - RAID - Tertiary storage - File Organization - Organization of Records in Files - Indexing and Hashing - Ordered Indices - B+ tree Index Files -B- tree Index Files - Bitmap Indices - Static Hashing - Dynamic Hashing -Query Processing - Catalogue Information for Cost Estimation – Selection Operation - Sorting - Join Operation - Query optimization - Database Data Analysis.

TEXT BOOKS:

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, McGraw-Hill Education; 6 edition, 2010).

REFERENCES:

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Pearson India; 7th edition, 2017, 2017).
- 2. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- 3. Carlos Coronel, Steven Morris, "Database Systems Design, Implementation and Management, 13th Edition, Cengage Learning; 13th edition, 2018).

COURSI	E DESIGNERS			
S. No.	Name of the faculty	Designation	Department	Mail Id
1	Mr. S. SenthilKumar	Assistant Professor	CSE	senthilkumar@vmkvec.edu.in
2	Mr. S. Muthuselvan	Assistant Professor Gr. II	CSE	muthuselvan@avit.ac.in

17CS	CC22	D	A T A D	ASE	ллал		MENT	r eve	гелл	Cat	egory	L	Т	Р	Cr	edit
1705	CC22		AIAD	ASE		AGE LAB		515		(CC	0	0	4		2
This co applica manipu PRER	ations, p 1late dat QUISIT	erform a using FE NI	many o other I IL	operati	ons re	lated t	o creati	ng, ma	nipula	0 0					eal-world ng DBM	l S tools and
	RSE OB			· .	1	· 1	6.04	. 14	2	T		<u> </u>				
1.									- •	0	ge (SQL	-				
2.	To emp	ploy the	conce	ptual a	and rel	ationa	l model	s to de	sign la	rge data	base sys	stems.				
3.	To des	ign and	build	databa	se syst	em fo	r a give	n real v	vorld j	problem	s.					
COUR	RSE OU	TCOM	IES													
On the	success	ful con	pletio	n of the	e cours	se, stu	dents w	ill be a	ble to							
Build a relation	On the s and man nal datal	ipulate									Apj	ply				
using v	Develop						abases f	for a gi	ven ap	oplicatio	on Apj	ply				
CO3. C synony		et and n	nake us				cts such	as ind	ices, s	equence	s, Ana	alysis				
CO4. I	Develop			PL/SQ	L and	l mani	pulate d	latabas	es thro	ough the	se Ana	alysis				
Develo databas Connec	Construc op a com se applic ctivity.	plete cation in	n a hig	h level	langu	age us	sing Java	a Datal	oase	L (CO5) Ana	alysis IFIC (DUTC	OME	<u>s</u>	
cos		PO2				PO6				PO10	PO11			PSO1		PSO 3
CO1	М	М	М	М	-	-	-	-	-	-	-	-		М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-		М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-		М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-		М	М	S
CO5	S	М	М	М	-	-	-	-	-	-	-	-		М	М	S
S- Stro	ong; M-N	Medium	i; L-Lo	W				<u>ı </u>			1	I	l			

LIST OF EXPERIMENTS

- 1. Write a program to illustrate the creation of a database and writing SQL queries to retrieve information from the database
- 2. Write a program to perform Insertion, Deletion, Modifying, Altering, Updating and Viewing records based on conditions
- 3. Write a program to illustrate Simple SQL Queries
- 4. Write a program to analyze and model a database application
- 5. Write a program to illustrate the creation and Modification of Tables without normalization
- 6. Write a program to illustrate the creation and Modification of Tables with normalization
- 7. Write a program to illustrate Integrity Constraints enforcement
- 8. Write a program to illustrate Complex SQL Queries
- 9. Write a program to illustrate the creation and usage of other database objects
- 10. Write a program to illustrate the creation of Procedures, Functions and Package with Cursor
- 11. Write a program to illustrate the creation of Triggers.
- 12. Write a program to illustrate the creation of composite data types in PL/SQL

REFERENCES:

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Fourth Edition, Tata McGraw Hill, 2012.
- 2. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Fourth Edition, Addision weskey, 2002.
- 3. Raghu Ramakrishnan, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- **4.** Peter Rob and Corlos Coronel, "Database Systems Design, Implementation and Management, Fifth Edition, Thompson Learning, Course Technology, 2003.

	NSE DESIGNERS			
S.	Name of the faculty	Designation	Department	Email Id
No				
1.	Mr. S. SenthilKumar	Assistant Professor	CSE / VMKVEC	senthikumars @vmkvec.edu.in
2.	Mr.S.Muthuselvan	Assistant Professor (G II)	CSE / AVIT	muthuselvan@avit.ac.in

174	CSCC0	b		T		ROCI	RAMN	IINC			Category	L	Т	Р	Credit
17		•		J		KUGI		mo			СС	3	0	4	3
This c	Student	study l									s and help e Java prog				
PRER NIL	EQUIS	SITE													
COU	RSE OF	JECTI	IVES												
1.	Unde	rstand f	undame	entals of	f progra	amming	g such a	s variał	oles, co	nditiona	l and itera	tive exec	ution, r	nethods	s, etc.
2.	Unde using	rstand f class li	undame braries,	entals of etc.	f object	-orient	ed prog	rammin	ıg in Ja	va, inclu	ding defin	ing class	ses, invo	oking n	nethods,
3.	Be av	vare of	the imp	ortant t	opics ai	nd prine	ciples o	f softwa	are dev	elopmen	ıt.				
4.	Unde	rstand H	Event H	andling	and Sv	ving Co	ompone	nts.							
5.	Unde	rstand (Generic	Program	mming.										
COU	RSE OU	JTCON	IES												
On suc	ccessful	comple	tion of	the cou	rse, stu	dents w	ill be a	ble to							
CO1.Kr	nowledg	e of the	structu	ire and	model o	of the Ja	ava pro	grammi	ng lang	guage			Under	stand	
CO2.Us	e the Ja	va prog	rammir	ng langu	lage for	variou	ls progr	amming	g techn	ologies			Under	rstand	
CO3. D	evelop s	software	e in the	Java pr	ogramn	ning la	nguage						Ap	ply	
	aluate u ogramm							require	d to dec	cide whe	ther the		Ana	lyze	
CO5.Ch	-	engine	ering a	pproach	to solv	ing pro	blems,	•	g from	the acqu	ired		Ap	ply	
MAPI	PING V	VITH P	ROGR	AMM	E OUT	COME	ES ANE	PRO	GRAM	ME SPI	ECIFIC C	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	М	М	-	S	-	-	-	-	-	-	-	S	М	-
CO2	S	М	М	-	М	-	-	-	-	-	-	-	М	М	М
CO3	S	М	L	L	М	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	L	М	-	-	-	-	-	-	-	М	М	-
	S	М	L	L	S	-	-	-	-	-	-	-	S	М	М

BASICS OF JAVA

Object oriented programming concepts – objects – classes – methods and messages – abstraction and encapsulation – inheritance – abstract classes – polymorphism.- Objects and classes in Java – defining classes – methods - access specifiers – static members – constructors – finalizemethod.

ARRAYS, STRINGS & OBJECTS

Arrays – Strings - Packages – Java-Doc comments – Inheritance – class hierarchy – polymorphism – dynamic binding – final keyword – abstract classes - The Object class – Reflection – interfaces – object cloning – inner classes – proxies.

EVENTS & GRAPHICS PROGRAMMING

I/O Streams - Filter and pipe streams - Byte Code interpretation - Basics of event handling - event handlers - adapter classes - actions - mouse events - AWT event hierarchy - Graphics programming - Frame - Components - working with 2D shapes.

SWING & GENERIC PROGRAMMING

Introduction to Swing – Model-View-Controller design pattern – buttons – layout management – Swing Components – exception handling – exception hierarchy – throwing and catching exceptions - Motivation for generic programming – generic classes – generic methods – generic code and virtual machine – inheritance and generics – reflection and generics.

THREADS & SOCKET PROGRAMMING

Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – Executors – synchronizers – Socket Programming – UDP Datagram – Introduction to JavaBeans.

TEXT BOOKS:

- 1. Cay S. Horstmann and Gary Cornell, "Core Java: Volume I Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.
- 2. Elliotte Rusty Harold, "Java Network Programming", O"Reilly publishers, 2000.
- 3. Ed Roman, "Mastering Enterprise Java Beans", John Wiley & Sons Inc., 1999.

REFERENCES:

- 1. K. Arnold and J. Gosling, "The JAVA programming language", Third edition, Pearson Education, 2000.
- 2. Timothy Budd, "Understanding Object-oriented programming with Java", Updated Edition, Pearson Education, 2000.
- 3. C. Thomas Wu, "An introduction to Object-oriented programming with Java", Fourth Edition, Tata McGraw-Hill Publishing company Ltd., 2006.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mrs. R. Shobana	Assistant Professor (GII)	CSE	shobana@avit.ac.in
2.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in

17CSCC26	JAVA PROGRAMMING LAB	Category	L	Т	Р	Credit
		CC	0	0	4	2
DDEAMDLE						

PREAMBLE

The goal of this course is to provide students with the ability to write programs in Java and apply concepts described in the Object-Oriented Programming course. The course is designed to accommodate students with diverse programming backgrounds, consequently Java is taught from first principles in a practical class setting were students can work at their own pace from a course handbook. Each practical class will culminate in an assessed exercise.

PREREQUISITE

Object Oriented Programming Lab (17CSCC02)

COURSE OBJECTIVES

0001															
1	Gain	knowle	dge abo	out basi	e Java l	anguag	e synta:	x and se	emantic	s to wr	ite Java pr	ograms ai	nd use co	oncepts	such as
1.	variat	oles, con	nditiona	al and it	erative	executi	on met	hods et	с.						
•	Unde	erstand	the fun	damenta	als of ol	oject-or	iented j	progran	nming i	n Java,	including	defining	classes,	objects,	
2.	invok	ing met	thods et	c and e	xceptio	n handl	ing me	chanisn	18.						
3.	Unde	rstand t	he prin	ciples o	f inheri	tance, p	ackage	s and ir	nterface	es.					
COUR	RSE OU	TCON	IES												
On suc	cessful	comple	tion of	the cou	rse, stu	dents w	vill be a	ble to							
CO1. Ci	reate Ja	va prog	rams th	at solve	simple	busine	ss prob	lems.			Apply				
CO2. V	alidate	user inp	out.							A	Apply				
CO3. C	onstruct	a Java	class b	ased on	a UML	class c	liagram	l.			Apply				
C O4. Pe	erform a	ı test pla	an to va	lidate a	Java p	rogram	•			A	Apply				
C O5. D	ocumen	t a Java	ı progra	ım.						A	Apply				
MAPP	PING W	ITH P	ROGR	AMM	E OUT	COME	S ANE) PRO	GRAM	ME SF	PECIFIC (OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	S	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	S	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	S	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	S	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	М	-	-	-	-	-	-	-	М	М	S

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS.

- 1. Write a JAVA program to search the largest element from the given array.
- 2. Write a JAVA program to sort the strings in an alphabetical order.
- 3. Write a JAVA program to extract a portion of a character string and to print the extracted portion and the remaining portion of the string. Assume that m characters are extracted, starting with the nth character.
- 4. Write a JAVA program for illustrating overloading and overriding methods in JAVA.
- 5. Write a JAVA program which illustrates the implementation of multiple inheritance using interfaces in JAVA.
- 6. Write a JAVA program to create your package for basic mathematical operations such as add, subtract, multiply. Demonstrate the use of this package in another class.
- 7. Write a JAVA program that counts the number of digits in a given number. If an alphabet is entered instead of a number, the program should not terminate. Instead it should display appropriate error message. (Exception Handling).
- 8. Write a JAVA program to move the text "JAVA PROGRAMMING LAB" diagonally using Applet.
- 9. Write a JAVA program to create an Applet with a label "Do you know car driving?" and two buttons Yes, NO. When the user clicks "Yes" button, the message "Congrats" must be displayed. When the user clicks "NO "button, "Regrets" must be displayed.
- 10. Write a JAVA program to animate the face image using Applet.
- 11. Write a JAVA program to create four Text fields for the name, street, city and pin code with suitable Labels. Also add a button called "My Details". When you click the button, your name, street, city, and pin code must appear in the Text fields.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. SASIKALA	Associate Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in
2.	Mr.S.Muthuselvan	Assistant Professor(G II)	CSE / AVIT	muthuselvan@avit.ac.in

17CSC	C07			OI		ГING	GVGT	TN		C	ategor	y L	Т	P (Credit
17030	C07			U	LNA	IIIIG	5151				CC	3	0	4	3
PREAM The study cloud con into some	ent wi nputii	ng, n	nobile	compi	iting e	tc. Thi	is cour								
PREREC NIL	QUIS	ITE													
COURS	E OB	JEC	TIVE	S											
						•	•••	stems.							
				esses a proce		w proc	cesses	comm	unicat	e, how	proces	s synchro	onizatio	on is do	ne
3. To	have	an u	nderst	anding	g of the	e main	memo	ory and	secor	ndary n	nemory	/ manage	ment to	echniqu	les.
4. To	under	rstan	d the]	/O Su	bsyste	m.									
1	have tems.		xposu	re to th	ne role	of ope	erating	syster	n in cl	oud an	d mob	ile enviro	onment	operati	ng
COURS	E OU	тсс)MES												
On the su	ccess	ful c	omple	tion of	f the co	ourse,	studer	ts will	be ab	le to					
CO1. To systems a										of ope	erating	Appl	У		
CO2. To	Unde	rstan	d the	proces	s sync	hroniz		<u> </u>		the giv	en	Appl	У		
scenario CO3.Illu							mager	nent of	mem	ory (th	e main	Unde	erstand		
memory			•	•		•		•							
CO4.App	2						U					Appl	-		
CO5. Ide	ntify t	the ro	ole of	operat	ing sys	stem ir	n cloud	and n	nobile	enviro	nment	. Anal	yze		
MAPPIN	IG W	ITH	I PRO	GRAI	MME	OUTO	COMI	ES AN	D PR	OGRA	MME	SPECI	FIC OU	UTCO	MES
COs PO	D1 P	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	5	S	М	М	-	-	-	-	-	-	-	-	S	S	-
CO2	5	S		М	-	-	-	-	-	-	-	-	S	М	-
CO3	5	S		М	-	-	-	-	-	-	-	-	S	М	-
CO4	5	М	L	М	-	-	-	-	-	-	-	-	S	L	М
CO5	5	М	L	L	-	-	-	-	-	-	-	-	S	М	-
S- Strong	; M-N	Medi	um; L	-Low	<u> </u>	I	I	1	<u> </u>	<u>I</u>				_1	

OPERATINGSYSTEM

Introduction & Structure: Basics, OS Architecture, OS Operations, System calls.

PROCESSES&SYNCHRONIZATION

Process concept – Process scheduling – Operations on processes – Cooperating processes – Inter process communication – Communication in client-server Systems. Case study: IPC in Linux. Threads: Multi-threading models – Threading issues. Case Study: Threads library– Clock Synchronization – Event Ordering – Mutual Exclusion – Deadlock Modelling – Deadlock Prevention – Deadlock Avoidance – Deadlock Detection and Recovery - Election Algorithms.

STORAGEMANAGEMENT

Background – Swapping – Contiguous memory allocation – Paging – Segmentation – Segmentation with paging. Virtual Memory: Background–Demand paging – Process creation – Page replacement – Allocation of frames – Thrashing. Case Study: Memory management inLinux.

I/O SYSTEMS

I/O Systems – I/O Hardware – Application I/O interface – kernel I/O subsystem – streams – performance. Mass-Storage Structure: Disk scheduling – Disk management – Swap-space management – RAID – disk attachment – stable storage – tertiary storage. Case study: I/O inLinux.

CLOUD OS & MOBILEOS

Introduction to Cloud Computing, Features of Cloud OS, Case Studies. - Introduction to Mobile Computing Features of Mobile OS, Case Studies.

TEXT BOOKS:

1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Edition, Wiley India Pvt. Ltd, 2008.

REFERENCES:

- 1. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Pearson Education, 2004.
- 2. Gary Nutt, "Operating Systems", Third Edition, Pearson Education, 2004.
- 3. Harvey M. Deital, "Operating Systems", Third Edition, Pearson Education, 2004.
- 4. Fundamentals Of Mobile Computing, Patnaik, Prasant, Kumar, Mall, Rajib, PHI,2012.
- 5. Mobile Computing Technology, Applications, and Service Creation 1st edition, Asoke K Talukder, Roopa Yavagal, McGraw-Hill, 2006.
- 6. The Practice of Cloud System Administration: Designing and Operating Large Distributed Systems, Thomas A. Limoncelli Strata R. Chalup , Christina J. Hogan , Addison-Wesley Professional; 1st Edition,2014.
- 7. Cloud Computing: Concepts, Technology & Architecture, Thomas Erl, Ricardo Puttini, Zaigham Mahmood, Prentice Hall; 1st Edition,2013.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Mrs. Shobana	Assistant Professor(G II)	CSE	shobana@avit.ac.in
2.	Dr.S.SenthilKumar	Assistant Professor	CSE	senthikumars@vmkvec.edu.in

COURSE DESIGNERS

99

13hrs

6hrs

10hrs

11hrs

5hrs

1	7CSCC2	24		OP	FRATI	ING SY	VSTEN	IS LAB	2		Categor	y L	Т	P (Credit
											CC	0	0	4	2
and the comma	boratory	riment C Pro	s for acordination of the second s									on of com g system e			
COUR	SE OB	JECT	IVES												
1.	To lea	rn shel	ll progra	amming	g and the	e use o	f filters	in the U	JNIX e	nvironm	ent.				
2.	To lea	rn to p	rogram	in C us	ing sys	tem cal	ls.								
3.	To lea	rn to u	se the fi	ile syste	em relat	ed syst	em call	s.							
4.	To pro	ovide k	nowled	ge aboı	it proce	sses cro	eation a	nd proc	esses c	ommuni	cation.				
5.	To lea	rn how	v proces	s synch	ronizat	ion is d	lone usi	ng sem	aphores	8.					
COUR	SE OU	TCOM	/IES												
On the	success	ful con	npletior	of the	course,	studen	ts will	be able	to						
C O1 . Fa	miliar v	vith the	e langua	ge and	terms o	of the U	NIX/L	INUX c	peratin	ig systen	1	Apply			
	elineate e UNIX					es need	ed to ca	arry out	basic o	operation	is on	Apply			
	esign, de verage tu								vaiting	time and	1	Apply			
	esign so chemes	lutions	for Inte	er Proce	ess com	munica	tion an	d memo	ory mar	nagemen	t	Apply			
C O5 . De						vare so	lution to	o a give	n probl	em whic	ch	Apply			
MAPP	PING W	TTH P	PROGR	AMM	E OUT	COMF	ES ANI) PRO	GRAM	ME SP	ECIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	S	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	S	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	S	-	-	-	-	-	-	-	М	М	М
CO4	S	M	М	М	S	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	S	-	-	-	-	-	-	-	М	М	S
S- Stro	ng; M-N	Aediun	n; L-Lo	W											

LIST OF EXPERIMENTS.

- 1. Execute Basic UNIX commands.\
- 2. Write C programs to simulate UNIX commands like ls, grep, etc.
- 3. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for FCFS and SJF. For each of the scheduling policies, compute and print the average waiting time and average turnaround time. (2sessions).
- 4. Given the list of processes, their CPU burst times and arrival times, display/print the Gantt chart for Priority and Round robin. For each of the scheduling policies, compute and print the average waiting time and average turnaround time. (2sessions).
- 5. Developing Application using Inter Process communication (using shared memory, pipes or message queues).
- 6. Implement the Producer Consumer problem using semaphores.
- 7. Implement some memory management schemes I.
- 8. Implement some memory management schemes II.
- 9. Implement any file allocation technique (Linked, Indexed or Contiguous)

REFERENCES:

- 1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", Sixth Edition, Wiley India Pvt Ltd, 2003.
- 2. Andrew S. Tanenbaum, "Modern Operating Systems", Second Edition, Pearson Education, 2004.\
- 3. Gary Nutt, "Operating Systems", Third Edition, Pearson Education, 2004.
- 4. Harvey M. Deital, "Operating Systems", Third Edition, Pearson Education, 2004.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Senthilkumar	Assistant Professor	CSE / VMKVEC	senthilkumars@vmkvec.edu.in
2	Mrs. R Shobana	Assistant Professor (GII)	CSE / AVIT	shobana@avit.ac.in

170	SCCO	0		CO	MDIT	PED N		ORK	2		Category	L	Т	P (Credit
1/C	SCCU	0		CO	WIPU			UKK	3		CC	3	0	0	3
The p Identi each l of infe	fy the o	of thi compo or give on from	onents en appl m one	requir licatio	ed to b n. Ider	uild di tify th	ifferen e solu	t types tion fo	s of ne or each	tworks	nmunicat . Choose onality fo	the requ	ired fu	inction	ality at
NIL															
COU	RSE O	BJE	CTIVI	ES											
1.	To pr	ovide	basic	knowl	edge i	n netw	orking	g conce	epts.						
2.	To in	trodu	ce and	demo	nstrate	variou	ıs brid	lges, sv	witche	s and E	thernets.				
3.	To in	trodu	ce diff	erent r	nethod	lologie	s in ro	outing.							
4.	To le	arn ab	out tra	insmis	sion p	rotoco	ls and	QOS.							
5.	To pr	ovide	know	ledge	about o	liffere	nt app	licatio	n prote	ocols.					
COU	RSE O	UTC	OME	5											
On suc	cessful	comp	oletion	of the	cours	e, stud	ents w	vill be	able to)					
CO1.L	earn th	e fund	lament	als of	netwo	rks and	l diffe	rent ty	pes of	OSI L	ayers.	Under	stand		
CO2.L		e diffe	erent E	therne	et, wire	less no	etwork	ks, swi	tching	and br	idging	Under	stand		
CO3.D	esign s		ns for	compl	ex rou	ting m	ethod	s and c	liffere	nt mult	icast	Evalua	nte		
routing CO4.L			ents o	f diffe	rent pr	otocol	s for t	ransmi	ission	nurnos	e and				
study tl								i unisini	551011	purpos	e una	Under	stand		
CO5.L	earn di	fferen	t types	of ap	plication	on pro	tocols	and its	s archi	tecture	•	Under	stand		
MAP	PING	WITI	H PR()GRA	MME	OUT	СОМ	ES AN	ND PR	ROGRA	AMME S	PECIF	IC OU	TCON	/IES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	-	-	-		-	-	-		S	М	-
-CO2	S	М	М	-	-	-	-	-	-	-	-	-	S	М	-
CO3	S	М	S	М	-	-	-	-	-	-	-	-	S	М	М
CO4	S	М	М	-	-	-	-	-	-	-	-	-	S	М	-
CO5	S	М	М	-	-	-	-	-	-	-	-	-	S	М	-
S- Str	ong; M	I-Med	ium; I	L-Low											

FUNDAMENTALS OF OSI LAYERS

Building a network – Requirements - Layering and protocols - Internet Architecture – Network software – Performance ; Link layer Services - Framing - Error Detection - Flow control.

MEDIA ACCESS & INTERNETWORKING

Media access control - Ethernet (802.3) - Wireless LANs – 802.11 – Bluetooth - Switching and bridging – Basic Internetworking (IP, CIDR, ARP, DHCP, ICMP).

ROUTING

Routing (RIP, OSPF, metrics) – Switch basics – Global Internet (Areas, BGP, IPv6) - Multicast – addresses – multicast routing (DVMRP, PIM).

TRANSPORT LAYER

Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission – TCP Congestion control - Congestion avoidance (DECbit, RED) – QoS – Applicationrequirements.

APPLICATION LAYER

Traditional applications -Electronic Mail (SMTP, POP3, IMAP, MIME) – HTTP – Web Services – DNS –SNMP.

TEXT BOOKS:

- 1. Behrouz A. Foruzan, "Data communication and Networking", Seventh Edition, Tata McGraw-Hill,2017.
- 2. Andrew S. Tannenbaum, David J. Wetherall "Computer Networks", Pearson Education, Eighth Edition, 2016.

REFERENCES:

- 1. William Stallings, "Data and Computer Communication", Eighth Edition, PearsonEducation.
- 2. Knuth, D.E., "Computer Communication and Networks", Sixth Edition, McGrath-Hill, 2016.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K. Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mr.G.Seenivasan	Assistant Professor	CSE	seenivasan@vmkvec.edu.in

17CSCC25	COMPUTER NETWORKS LAB	Category	L	Т	Р	Credit
		CC	0	0	4	2

PREAMBLE

The purpose of this course is to understand the concepts of data communication and computer networks. Identify the components required to build different types of networks. Choose the required functionality and solution at each layer for given application. Trace the flow of information from one node to another node in the network.

PREREQUISITE

NIL

INIL															
COUR	SE OBJ	ECTIV	ES												
1.	To pro	vide bas	sic know	wledge	in netw	orking	concep	ts.							
2.	To intr	oduce a	nd dem	onstrat	e variou	ıs bridg	ges, swi	tches a	nd Ethe	rnets.					
3.	To intr	oduce d	ifferent	t metho	dologie	s in rou	ıting								
4.	To lear	n about	transm	ission j	protoco	ls and (QOS								
5.	To pro	vide kn	owledge	e about	differe	nt appli	cation]	protoco	ls.						
	SE OUT			ne cours	se, stud	ents wil	ll be ab	le to							
CO1.Lea	rn the fu	Indame	ntals of	networ	ks and	differer	nt types	of OSI	Layers			Understand	1		
CO2.Lea	rn the di	fferent	Etherne	et, wire	less net	works,	switchi	ng and	bridgin	g conce	pts	Understan	t		
CO3. Det tec	sign solı hniques		or comp	olex rou	iting me	ethods a	and diff	erent m	ulticast	t routing	7	Apply			
CO4. Lea qua	arn the c ality of s					for tra	nsmissi	ion purp	oose and	d study 1	the	Apply			
CO5. Lea	arn diffe	rent typ	es of ap	pplicati	on prote	ocols ar	nd its ar	rchitect	ure.			Apply			
MAPP	ING WI	TH PR	OGRA	MME	OUTC	OMES	S AND	PROG	RAMN	1E SPE	CIFIC	OUTCOM	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	S	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	S	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	S	-	-	-	-	-	-	-	М	М	М
1															

М

Μ

S

S- Strong; M-Medium; L-Low

S

CO5

Μ

Μ

М

S

LIST OF EXPERIMENTS.

- 1. Implementation of Stop and Wait Protocol and Sliding WindowProtocol.
- 2. Study of Socket Programming and Client Servermodel
- 3. Write a code simulating ARP /RARPprotocols.
- 4. Write a code simulating PING and TRACEROUTEcommands
- 5. Create a socket for HTTP for web page upload anddownload.
- 6. Simple Tcp/Ip Client ServerCommunication
- 7. UDP Echo Client ServerCommunication
- 8. Half Duplex Chat UsingTCP/IP
- 9. Full Duplex Chat UsingTCP/IP
- 10. Implementation Of File TransferProtocol
- 11. Remote Command Execution UsingUDP
- 12. ARP Implementation Using UDP

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. S. Senthilkumar	Assistant Professor	CSE	senthilkumars@vmkvec.edu.in
2.	Mr. K. Karthik	Assistant Professor	CSE	karthik@avit.ac.in

17C	SCC18	SCC18 RICH INTERNET APPLICATION									Category	L	Т	P C	Credit
											CC	3	0	0	3
PREA Uses of fundame	web s		•						0	naring an	d busines	s. Thecou	ırse	focuses	on the
PRER	EQUIS	ITE: JA	AVA PI	ROGRA	AMMIN	IG									
COUR	SE OB	JECTI	VES												
1.	To lear	n CGI	Concep	ts & CO	GI Prog	rammin	ıg								
2.	To Stu	dy DH7	ГML, X	ML,AJ	AX										
3.	To Stu	dy On-l	Line we	eb appli	cation &	& Interr	net Con	cepts							
COUR	SE OU	тсом	IES												
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0						
CO1: To	ounder	stand th	e basic	concep	t of HT	ML and	1 Script	ing Lar	iguage			Understa	nd		
CO2: To	o learn t	the HTM	ML, Co	mmon (Gatewa	y Interf	ace.					Apply			
CO3: To	o learn t	the Java	a Script	and AJ	AX							Apply			
СО4 : То) learn t	he Serv	ver side	prograi	nming							Apply			
CO5: To	learn t	he data	base co	nnectiv	ity.							Apply			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAM	ME SPE	CIFIC C	OUTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
S- Stro	ng; M-N	Medium	ı; L-Lov	N											

INTRODUCTION

Internet Principles – Basic Web Concepts – Client/Server model – retrieving data from Internet – HTML and Scripting Languages – Standard Generalized Mark –up languages – Next Generation – Internet –Protocols and Applications

COMMON GATEWAY INTERFACE PROGRAMMING

HTML forms – CGI Concepts – HTML tags Emulation – Server – Browser Communication – E-mail generation – CGI client Side applets – CGI server applets – authorization and security. Introduction to PERL

SCRIPTING LANGUAGES

Java Script Programming-Dynamic HTML-Cascading style sheets-Object model and Event model-Filters and Transitions-Active X Controls-Multimedia-Client side script.- Traditional webapplication vs AJAX application –creating full scale AJAX application - Forms – Scripting Object

SERVER SIDE PROGRAMMING

Dynamic Web content – cascading style sheets – DHTML – XML – Server side includes – communication – Active and Java Server Pages - Ruby enabled applications

ONLINE

Simple applications – on-line databases – monitoring user events – plug-ins –database connectivity – Internet Information Systems – MICROSOFT IIS - EDI application in business – Internet Commerce – Customization of Internet Commerce.

TEXT BOOK

1. Jason Hunter, William Crawford, "Java Servlet Programming", O' Reilly Publications, 1999.

2. Ravi Kalakota and Andrew B Whinston, "Frontiers of Electronic Commerce", Addison Wesley, 1996

3.Eric Ladd, Jim O' Donnel, "Using HTML 4, XML and Java", Prentice Hall of India –QUE,1999 **4.**Paul JDeitel and Harvey M Deitel, "AJAX, Rich Internet appliactions and web development", Prentice Hall,2008.

REFERENCES

Jeffy Dwight, Michael Erwin and Robert Niles, "Using CGI", Prentice Hall of India QUE,2010.
 Scot Johnson, Keith Ballinger, Davis Chapman, "Using Active server Pages", Prentice Hall of India,1999.

3. Ted coombs, Jason coombs, Brewer, "Active X source book", John wiley, 1999

4. Evangelos Petroutsos, "Mastering Visual Basic 6", BPB Publications, 1998

COURSE DESIGNERS												
Name of the Faculty	Designation	Department	Mail ID									
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in									
Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvecedu.in									

17CSCC31		RICH INTERNET APPLICATION DEVELOPMENT							Catego	ory	L	Т	P C	credit		
		LAB						CC		0	0	4	2			
This constraints of the principation of the pr	PREAMBLE This course provides to study Internet programming and Web application development. Students will learn basic principles and techniques for building Internet applications. It provides students with the basic Web page development technologies and an introduction to dynamic Web page development using client-side scripting. Topics include introduction to HTTP protocol and client side programming, XHTML, Cascading Style Sheets, JavaScript DOM, XML, Namespace, DTD, Schema and AJAX.															opment include
PREREQUISITE – JAVA PROGRAMMING LAB(17CSCC26)																
COUR	RSE OB	JECT	IVES													
1.	To le	To learn CGI Concepts & CGI Programming														
2.	To St	To Study DHTML, XML,AJAX														
3.	To Study On-Line web application & Internet Concepts															
COUR	RSE OU	JTCON	MES													
On the	succes	sful con	mpletio	n of the	e course	e, stude	nts wil	l be abl	e to							
CO1 Understand Ajax Web application model and compare with traditional Web Application model (JS,XML,PHP,CSS)												Understand				
CO2. Develop Rich Internet Applications using JavaScript, XML, PHP, DOM to communicate with Web Server												Apply				
CO3 . Develop dynamic Web pages using CSS, validating input data, wrapping applications into a single PHP script												Apply				
CO4. Implement Server-Side script to serve client-side requests												Apply				
CO5. Develop dynamic web pages using Ajax												Apply				
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO3
CO1	М	М	М	М	L	-	-	-	-	-	-	-		М	М	М
CO2	М	М	М	М	S	-	-	-	-	-	-	-		М	М	S
CO3	М	М	S	М	S	-	-	-	-	-	-	-		М	М	S
CO4	S	М	М	М	М	-	-	-	-	-	-	-		М	М	М
CO5	S	М	М	М	S	-	-	-	-	-	-	-		М	М	S
S-Stro	ong; M-I	Mediur	n; L-Lo	ow												

LIST OF EXPERIMENTS

- 1. Use HTML5 markup tags for structuring web page
- 2. Use HTML5 with appropriate CSS properties and elements for styling, formatting, and enhancing web pages
- 3. Construct and validate web pages using HTML5 and CSS3
- 4. Implement client-side application logic using JavaScript
- 5. Define XML related concepts and languages
- 6. Compare and contrast between HTML and XML
- 7. Validate XML documents for correctness.
- 8. Create JSON in JavaScript and insert JSON data into HTML
- 9. Implement Server-Side script to serve client-side requests
- 10. Develop dynamic web pages using Ajax technology

TEXT BOOK

1. Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, , "Internet and World Wide Web", Prentice Hall; 5 edition (2011-11)

Course Designers:

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.K.Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in
2.	Mr. S.Muthuselvan	Assistant Professor (G II)	CSE / AVIT	muthuselvan@avit.ac.in

170	CSCC16	CLOUD COMPUTING	Category	L	Т	Р	Credit						
	CC 3 0 0 3												
To study PRER	-	tand the concepts in cloud computing and apply them practi : COMPUTER NETWORKS TIVES	cally.										
1.	To understa	nd cloud computing concepts.											
2.	To study various cloud services.												
3.	To apply cloud computing in collaboration with other services.												

4.	To App	ly clou	d comp	uting se	ervices.										
5.	To app	y cloud	l compi	uting on	line.										
COUR	RSE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able	to						
C O1: A	ble to U	Indersta	and basi	ics in C	loud Co	mputin	ıg						Unde	rstand	
C O2: A	ble to a	pply clo	oud con	nputing	concep	ts in rea	al time						Ар	ply	
C O3: A	ble to d	evelop	cloud c	omputii	ng proje	ects							Ар	ply	
C O4 : A	ble to a	pply clo	oud serv	vices									Ар	ply	
C O5: A	ble to c	ollabora	ate clou			Ар	ply								
MAPF	PING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMI	ME SPH	CIFIC (DUTCON	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

COs	POI	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	POI0	POII	POI2	PSOI	PSO2	PSO3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
S- Stro	S- Strong; M-Medium; L-Low														

INTRODUCTION

Cloud Computing – History of Cloud Computing – Cloud Architecture – Cloud Storage –Why Cloud Computing Matters – Advantages of Cloud Computing – Disadvantages of Cloud Computing – Companies in the Cloud Today – Cloud Services.

DEVELOPING CLOUD SERVICES

Web-Based Application – Pros and Cons of Cloud Service Development – Types of Cloud Service Development – Software as a Service – Platform as a Service – Web Services – On-Demand Computing – Discovering Cloud Services Development Services and Tools – Amazon Ec2 – Google App Engine – IBM Clouds.

CLOUD COMPUTING FOR EVERYONE

Centralizing Email Communications – Collaborating on Schedules – Collaborating on To-Do Lists – Collaborating Contact Lists – Cloud Computing for the Community – Collaborating on Group Projects and Events – Cloud Computing for the Corporation.

USING CLOUD SERVICES

Collaborating on Calendars, Schedules and Task Management – Exploring Online Scheduling Applications – Exploring Online Planning and Task Management – Collaborating on Event Management – Collaborating on Contact Management – Collaborating on Project Management – Collaborating on Word Processing - Collaborating on Databases – Storing and Sharing Files.

COLLABORATING ONLINE

Collaborating via Web-Based Communication Tools – Evaluating Web Mail Services –Evaluating Web Conference Tools – Collaborating via Social Networks and Groupware –Collaborating via Blogs and Wikis.

TEXT BOOKS

1. Rajkumar Buyya, James Broberg, Andzej M.Goscinski, "Cloud Computing –Principles and Paradigms", John Wiley & Sons, 2010.

2. Michael Miller, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", Que Publishing, August 2008.

REFERENCES

1. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring. Processes for On-demand Computing, Applications and Data Centers in the Cloud with SLAs", Emereo Pty Limited, July 2008.

COU	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.	T.GEETHA	Assistant professor	CSE	geetha_kcs@yahoo.com

17A	ICC02		I	NFOR	Categor	y L	Т	Р	Credit						
											CC	3	0	0	3
PREAT To prov		introdu	ction to	the nee	ed for Ir	nformat	ion Sec	curity in	real tir	me and	to study te	echnique	s involv	ed in it.	
	EQUIS			R NETWO	ORKS										
COUR	SE OB	JECTI	VES												
1.	To stud	y founc	lational	theory	behind	inform	ationse	curity							
2.	To stud	y basic	princip	les and	technic	lues wh	endesig	gning a	secure	system					
3.	To stud	y the at	tacks a	nd defe	nses wo	ork in p	ractice								
4.	To lear	n about	the three	eats for	their si	gnifica	nce								
5.	To lear	To learn about the protections and limitations provided by today's technology													
COUR	SE OU	SE OUTCOMES													
On the	success	ful con	pletion	of the	course,	student	ts will t	e able t	.0						
СО1. То	o unders	stand th	e found	ational	theory	behind	inform	ationsed	curity			Underst	and		
СО2. То	o unders	stand th	e basic	princip	les and	technic	ues wh	endesig	ning a	secure s	system	Underst	and		
СОЗ. То				· ·			•				5	Underst	and		
СО4. То			-				-					Underst			
						C		1 1 .	1 1			TT 1	1		
СО5. То		•				•	•	•			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Underst			
MAPP COs	PING W PO1	ТТН Р РО2	ROGR PO3	AMMI PO4	EOUTO PO5	COME PO6	S AND PO7	PROC PO8	PO9	ME SPI PO10	ECIFIC (PO11	DUTCO PO12	MES PSO1	PSO2	PSO3
$\frac{COs}{CO1.}$	M	M PO2	Р О 3 М	Р О4 М	P05	PUo	PO/	P08	P09	PO10	POII	PO12	M	M	M
												M			
CO2. CO3.	M	M	S	M	M		_	_	-	-	-	-	M	M	M
CO3.	S	М	M	М		-	-	-	-	-	-	-	М	M	S
CO4. CO5.	S	M	M	M	S	-	-	-	-	-	-	-	M	M	S
	ng; M-N				2										Ĩ

INTRODUCTION

An Overview of Computer Security, Access Control Matrix, Policy-Security policies, Confidentiality policies, Integrity policies and Hybrid policies.

INFORMATION SECURITY MANAGEMENT

Cryptography- Key management – Session and Interchange keys, Key exchange and generation, Cryptographic Key Infrastructure, Storing and Revoking Keys, Digital Signatures, Cipher Techniques

SECURITY DESIGN AND ACCESS CONTROL MECHANISMS

Systems: Design Principles, Representing Identity, Access Control Mechanisms, Information Flow and Confinement Problem.

SECURITY ATTACKS FOR CLIENT/ SERVER SYSTEMS

Malicious Logic, Vulnerability Analysis, Auditing and Intrusion Detection

INFORMATION SECURITY RISK MANAGEMENT

Network Security, System Security, User Security and Program Security

TEXT BOOK

1. Matt Bishop ,"Computer Security art and science ", Second Edition, Pearson Education

REFERENCE BOOKS

1. Mark Merkow, James Breithaupt "Information Security : Principles and Practices" First Edition, Pearson Education,

2. Whitman, "Principles of Information Security", Second Edition, Pearson Education

3. William Stallings, "Cryptography and Network Security: Principles and Practices", Third Edition, Pearson Education.

4. "Security in Computing ", Charles P.Pfleeger and Shari Lawrence Pfleeger, Third Edition.

S. No.	. Name of the Faculty	Designation	Department	Mail ID
1.	Dr.M.Nithya	Professor	CSE	hodcse@vmkvec.edu.in
2.	Mrs. S. Leelavathy	5	Computer Science And Engineering	leelavathy@avit.edu.in

170	CSCC15	DEVELOPMENT											Т	Р	Credit
				L	JEVEL	OPME	LIN I				CC	3	0	0	3
	MBLE vide an	introdu	ction to	the .N	ET fran	nework	and ena	able the	studen	t to prog	gram in C	C#.			
PRER	EQUIS	ITE: JA	VA PRO	GRAMMI	NG										
COUR	RSE OB	JECTI	VES												
1.	To stud	y basic	and ad	vanced	feature	s of the	C# lan	guage							
2.	To crea	te form	based a	and wel	o based	applica	tions								
3.	To stud	y the ir	ternals	of the .	NET fr	amewo	rk								
4.	To lear	To learn about ADO.Net													
5.	To learn about different web services														
COUR	RSE OUTCOMES														
On the	success	ful con	pletion	of the	course,	student	ts will t	be able t	to						
СО1. Т	o learn t	he basi	cs of .ne	et Fram	e work	and C#	langua	ige				Unders	tand		
СО2. Т	o learn (C# elen	nents an	d OOP	S conce	epts						Apply			
СОЗ. Т	o learn i	nterfac	e and in	heritan	ce conc	epts in	C# lang	guage				Analyz	e		
CO4. To applicat		fundam	entals o	f windo	ow appl	ication	prograi	nming	and crea	ate a wi	ndow	Apply			
CO5. T		p web	applicat	tions an	d learn	advanc	ed					Apply			
MAPP	PING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPI	ECIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	М	М	М	-	-	-	-	-	-	-	М	-	-
CO2.	S	М	М	L	L	-	-	-	-	-	-	-	М	М	М
CO3.	S	М	S		М	-	-	-	-	-	-	-	М	М	М
CO4.	S	М	L		М	-	-	-	-	-	-	-	М	М	-
CO5.	S	М	L	L	М	-	-	-	-	-	-	-	S	М	-
S- Stro	ng; M-N	Medium	ı; L-Lov	N							I			i	

INTRODUCTION:

Overview Of .Net-Advantages Of .Net Over Other Languages-Assemblies-.Net Architecture-The Role of C# In The .Net Enterprise Architecture-The Common Language Runtime-C# Basics-Objects And Types-Inheritance –Arrays

OBJECT ORIENTED ASPECTS OF C#:

Operators and Casts: Operators - Type Safety - Operator Overloading - User-Defined Casts. Delegates and Events: Delegates – Events. Strings and Regular Expressions: System.String -Regular Expressions. Collections: Collection Interfaces and Types – Lists - Queues – Stacks -Linked Lists - Sorted Lists – Dictionaries – Hash Set - Bit Arrays – Performance-Indexers

I/O AND NETWORKPROGRAMMING:

Tracing and events - threading and synchronization - .Net security – localization – Manipulating XML - Managing the file system – basic networkprogramming.

ADO.NET: #:

Data Access: ADO.NET Overview - Using Database Connections – Commands - Fast Data Access: The Data Reader - Managing Data and Relationships: The DataSet Class – XML Schemas: Generating Code with XSD – Working with ADO.NET. Windows Forms: Creating a Windows Form Application - Control Class - Standard Controls and Components – Forms. Data Binding: The Data Grid View Control - Data Grid View Class Hierarchy - Data Binding - Visual Studio .NET and Data Access.

ASP.NET AND WEB SERVICES:

ASP.NET Pages: ASP.NET Introduction - ASP.NET Web Forms - ADO.NET and Data Binding.ASP.NET Development: User and Custom Controls - Master Pages - Site Navigation – Security –Themes- Web Parts. ASP.NET AJAX: What Is Ajax - What Is ASP.NET AJAX - Using ASP.NET AJAX.

TEXT BOOK

1. Christian Nagel, Bill Evjen, Jay Glynn, Morgan Skinner, Karli Watson, Professional C# 2008, Wiley Publishing, Inc., 2008. ISBN:978-8-126-51627-8.

REFERENCE BOOKS

- 1. Andrew Troelsen, "C# and the .NET Platform", A! Press,2005.
- 2. Herbert Schildt, "The Complete Reference: C#", Tata McGraw-Hill,2004.
- **3.** Kevin Hoffman, "Visual C# 2005", Pearson Education, 2006.

	NOL DESIGNERS			
S. No.	Name of the	Designation	Department	Mail ID
	Faculty			
1.	Mrs. T . Narmadha	La celerant Proteccor	Computer Science And Engineering	narmadha@vmkvec.edu.in
2.	Mrs. R. Shobana	Assistant Professor (GII)	Computer Science And Engineering	shobana@avit.ac.in

17CSCC3	30	C#			APPL					Category	L	Т	P (Credit
			DEV	ELOP	MENI	Г LAB				СС	0	0	4	2
PREAMBLE						_						11		
To gain program	-		-											
PREREQUISI			ROGRA	AMMIN	IG LAB	B(17CS	CC26)							
COURSE OBJ	ECTIV	/ES												
1. Distingu	uish be	tween b	y value	e, by ref	, and ou	ıt parar	neter ty	pes.						
2. Call cla	Call class methods using by value, by ref, and out parameters.													
3. To be al	b be able to define and use global named constants													
4. To be al	To be able to debug a program of syntax and logic errors													
5. Introduc	ntroduce to .Net IDE Component Framework.													
6. Program	ogramming concepts in .Net Framework.													
7. Creating	reating website using ASP.Net Controls.													
COURSE OUT														
On the successfu	1 0000	alation	of the a	011#0.0	tudanta	will be	obla ta							
	in com		of the c	ourse, s	ludents	will be)						
CO1. Create Si	mple a	pplicati	on usin	g web c	ontrols					Und	erstand			
CO2. Work wi	th State	es of AS	SP.NET	Pages	& Adro	otator C	Control			App	ly			
CO3. Use of cal	endar o	control,	Tree vi	ew con	trol & V	Validati	ion con	trols		Ana	lyze			
CO4. Query tex	tbox ar	nd Displ	laying 1	records	& Disp	lay reco	ords by	using d	latabase	Ap	oly			
CO5. Data list li	ink cor	trol & l	Data bi	nding u	sing dro	p dow	nlist co	ntrol		App				
MAPPING WI						*			1E SPE			ES		
Cos PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1. M	М	М	М	S	-		-	-	_	-	_	М	М	S
СО2. М	М	М	М	М	-		-	-	-	_		М	М	М
CO3. M	М	S	М	М	-		-	_	-	-		М	М	M
CO4. S	M	M	M	M	-		_	_	_	_		M	M	M
CO5. s	M	M	M	M								M	M	M
S- Strong: M-M				IVI	-		-	-	-	-	-	IVI	IVI	IVI

S- Strong; M-Medium; L-Low

170	CYCC01			U	NIX IN	TERN	ALS				Category	L	Т	Р	Cre	edit							
											EC	3	0	0		3							
This ta program used in PRER NIL	COURSE OBJECTIVES 1 To understand the design of the UNIX operating system																						
	Processes To become familiar with the various data structures used COURSE OUTCOMES On the successful completion of the course, students will be able to																						
СО1: Т	o learn	The ba	sic Uni	x opera	ting sys	tems ar	nd its ba	asic con	nmands			Underst	and										
СО2: Т	o analy	ze the b	ouffers	and ker	nel repr	esentat	ion.					Analyze	,										
СО3: Т	o analy	ze the l	UNIX s	ystem s	tructure	e, syster	m calls.					Analyze											
СО4: Т Марр				•			010	0	RAM	ME SPI	ECIFIC C	Analyze											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			PO12	PS01	PS	O2	PSO3							
CO1																							
CO2	S	М	L	L	М	-	-	-	-	-	-	М	S	Ν	1	М							
CO3	S	М	L	-	L	-	-	-	-	-	-	М	S	Ν		М							
CO4	S	М	L	L	М	-	-	-	-	-	-	М	S	N	1	М							
S- Stro	ng; M-N	Medium	n; L-Lo	W											S- Strong; M-Medium; L-Low								

SYLLABUS INTRODUCTION

General Review of the System-History-System structure-User Perspective-Operating System Services- Assumptions About Hardware. Introduction to the Kernel-Architecture System Concepts-Data Structures- System Administration **DISK BLOCKS**

The Buffer Cache-Headers-Buffer Pool-Buffer Retrieval-Reading and Writing Disk Blocks - Advantages and Disadvantages. Internal Representation of Files-Inodes- Structure-Directories-Path Name to Inode- Super Block-Inode Assignment-Allocation of Disk Blocks -Other File Types

FILE SYSTEM

System Calls for the File System-Open-Read-Write-Lseek-Close-Create-Special files Creation -Change Directory and Change Root-Change Owner and Change Mode-Stat- Fstat-Pipes-Dup-Mount-Unmount-Link-Unlink-File System Abstraction-Maintenance.

PROCESS MANAGEMENT

The System Representation of Processes-States-Transitions-System Memory-Context of a Process-Saving the Context-Manipulation of a Process Address Space-Sleep Process Control-signals-Process Termination-Awaiting-Invokingother Programs-The Shell-System Boot and the INITProcess.

MEMORY MANAGEMENT

Memory Management Policies-Swapping-Demand Paging-a Hybrid System-I/O Subsystem-Driver Interfaces-Disk Drivers-Terminal Drivers.

TEXT BOOKS

1. Maurice J. Bach, "The Design of the Unix Operating System", Pearson Education 2002.

REFERENCES

1. UreshVahalia, "UNIX Internals: The New Frontiers", Prentice Hall, 2000.

2. John Lion, "Lion's Commentary on UNIX", 6th edition, Peer-to-Peer Communications, 2004.

3. Daniel P. Bovet & Marco Cesati, "Understanding the Linux Kernel", O'REILLY, Shroff Publishers & Distributors Pvt. Ltd, 2000.

4. M. Beck et al, "Linux KernelProgramming

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. S. Muthuselvan	Assitant Professor (G- II)	CSE	muthuselvan@avit.ac.in
2	V.Amirthalingam	Associate Professor	CSE	Amirthalingam@vmkvec.edu.in

17C	SCC19			IN	TERN	ET O	F THI	NGS		С	ategory	L	Т	P C	redit
										0	CC	3	0	0	3
PREA To study		derstan	d the te	chnolog	gies inv	olved in	n Intern	et of Tl	nings (Io	oT) and a	pply the	m practic	ally.		
PRER	EQUIS	ITE :N	IL												
COUR	SE OB	JECTI	VES												
1.	To unde	erstand	the basi	ic conce	epts of l	OT									
2.	To stud	y the m	ethodol	ogy of	IOT										
3.	To Dev	elop IO	T appli	cations	using F	Raspber	ry PI								
4.	To Dev	elop IO	T appli	cations	using A	rduino	and In	tel Edis	on						
5.	To apply cloud concepts in IOT														
COUR	SE OU	тсом	IES												
On the	success	ful com	pletion	of the	course,	student	s will b	e able t	0						
CO1: A	ble to u	ndersta	nd basic	es in IO	Т							Understa	nd		
CO2: A	ble to u	ndersta	nd Meth	nodolog	y in IO	Т						Apply			
CO3: A	ble to de	esign IC	DT appl	ications	s using 1	Raspber	rry					Analyze			
CO4 : A	ble to de	esign IC	OT appl	ications	using A	Aurding	and In	tel Edis	son			Analyze			
<i>C05:</i> Al	ble to ap	oply Clo	oud con	nputing	in IOT							Apply			
MAPP	ING W	TTH P	ROGR	AMM	E OUT	COME	S AND	PROG	RAMN	AE SPEC	CIFIC O	UTCOM	1ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
S- Stro	ng; M-N	Aedium	i; L-Lov	V										u	

INTRODUCTION

Introduction-Characteristics-Physical design - Protocols – Logical design – Enabling technologies – IoT Levels – Domain Specific IoTs – IoT vs M2M.

IOT METHODOLOGY

IoT systems management - IoT Design Methodology - Specifications Integration and Application Development.

IOT WITH RASPBERRY

Bascis of Raspberry PI, Physical device – Raspberry Pi Interfaces – Programming – APIs / Packages – Web services

IOT WITH AURDINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino- Interfaces - Arduino IDE - Programming - APIs and Hacks

APPLICATIONS

Real time applications of IoT- Connecting IoT to cloud – Cloud Storage for Iot – Data Analytics for IoT– Software & Management Tools for IoT.

TEXT BOOKS

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015.

2. Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress,2014.

REFERENCES

1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.	Dr.M. Nithya	Professor	CSE	nithya@vmkvec.edu.in

17CYCC02			I	NTRO	DUCT				IAL	C	ategory	L	Т	P C	redit
					INTI	ELLIG	ENCI	Ŧ		(CC	3	0	0	3
contains knowled AI and i	labus is intellig lge and	ent age in mach epts, app	nt, Kno hine lear plication	wledge	Repres	entation	n and M	Iachine	learnin	g, and ap	plicatior	cial Intelli n. This is yllabus fo	useful to	how re	present
COUR	SE OB	JECTI	VES												
	To iden areas of				ms that	can be	solved	using A	I techn	ique: to k	now the	relation	between	AI and	other
	To have	•			c proble	em-solv	ing met	thods in	AI						
3.	To desi	gn soft	ware ag	ents to	solve a	problen	n.								
4.	Apply t	he know	wledge	of algoi	rithms t	o solve	arithme	etic pro	blems.						
5.	Assemt	ole an e	fficient	code fo	or engin	eering p	problem	ns.							
COUR	SE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	student	s will b	e able t	0						
CO1:. Io	dentify	the diff	erent ag	ent and	its type	es to sol	lve the	problen	ns			Understa	nd		
CO2: kr	now abo	out the p	problem	solving	g techni	que in A	Artificia	al Intell	igence.			Apply			
CO3: C					•			-				Apply			
CO4: to environi		bout ex	tension	of con	dition p	robabil	ity and	how to	apply in	n the real	time	Apply			
СО5: То	lean at	out Inf	ormatio	n Retri	eval and	l Speec	h Reco	gnition				Understa	nd		
MAPP	'ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMN	ME SPEC	CIFIC C	DUTCON	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-
CO2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	М
CO3	М		S	М	М	-	-	-	-	-	-	М	S	-	М
CO4	S	М	М	М	М	-	-	-	-	-	-	М	S	М	М
CO5	S	М	М	М	М	-	-	-	-	-	-	М	S	М	-
S- Stro	ng; M-N	Medium	n; L-Lov	N											

INTRODUCTION

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents-Problem Solving Approach To AI Problems-Problem Formulation

PROBLEM SOLVING

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed Search Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

MACHINE LEARNING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

APPLICATION

AI Applications-Language Models-Information Retrieval-Information Extraction-Natural Language Processing-Machine Translation-Speech Recognition

TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015

Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011.

REFERENCES

1.David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. Nilsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

COU	COURSE DESIGNERS													
S. No.	Name of the Faculty	Designation	Department	Mail ID										
1.	Dr.S.Rajaprakash	Associate professor	CSE	rajaprakash@avit.ac.in.										
2.	Dr.Nithya	Professor	CSE	Nithya@vmkvec.ac.in										

170	SCC17	,		CY	BER S	ECUF	RITY				Categor		T		Credit
PREAN	ABI F											3	0	0	3
		ovides	basic l	knowle	edge or	cvber	securi	tv con	cents.	Student	s able to	underst	and dif	ferent t	vpes of
attacks					.uge 01	e yeer	500011	uj con	eepts.	Student	<i>uoie to</i>	underst	und un		
PRERE					NETW	/ORK	S								
COUR															
1.	To und	lerstand	d the fu	Indame	entals o	f cybe	r secur	ity							
2.	To und	lerstand	d and p	revent	differe	nt type	es of at	tacks							
	To understand and prevent exploitations in cyber space														
	To detect and prevent Malicious codes														
	Defend against cyber attacks														
COUR	OURSE OUTCOMES														
On the s	e successful completion of the course, students will be able to														
CO1: A	Able to understand basics concepts in cyber security Understand														
CO2: <i>A</i>	Able to	unders	stand a	nd app	ly tech	niques	in prev	venting	real ti	me atta	cks	Underst	and an	d Apply	
CO3: A	ble to	preven	t explo	itation	s in we	b appli	ication	S				Apply			
CO4 : A	ble to	analyze	e, ident	ify and	l preve	nt mali	icious a	activity	<i>.</i>			Analyze	e and A	pply	
	: Able	v	Ũ									Apply			
									r		E SPECI		-		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		PSO3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO2	М	М	М	М	М	-	-	-	-	-	-	-	Μ	Μ	Μ
CO3	М	М	S	М	М	-	-	-	-	-	-	-	Μ	Μ	Μ
CO4	S	М	М	М		-	-	-	-	-	-	-	Μ	Μ	S
CO5	S	Μ	М	М	S	-	-	-	-	-	-	-	Μ	Μ	S
S- Stror	ng; M-N	Mediun	n; L-Lo	OW											

UNIT I- INTRODUCTION

Network and security concepts – basic cryptography – Symmetric encryption – Public key Encryption – DNS – Firewalls – Virtualization – Radio Frequency Identification – Microsoft Windows security Principles.

UNIT II - ATTACKER TECHNIQUES

Antiforensics – Tunneling techniques – Fraud Techniques - Threat Infrastructure.

UNIT III - EXPLOITATION

Techniques to gain a foot hold – Misdirection, Reconnaissance, and disruption methods.

UNIT IV - MALICIOUS CODE

Self Replication Malicious code – Evading Detection and Elevating privileges – Stealing Information and Exploitation.

UNIT V - DEFENSE AND ANALYSIS TECHNIQUES

Memory Forensics – Honeypots – Malicious code naming – Automated malicious code analysis systems – Intrusion detection systems – Defense special file investigation tools.

TEXT BOOKS

1. James Graham, Richard Howard and Ryan Olson, "Cyber Security Essentials", CRC Press, Taylor & Francis Group, 2011.

2. By Dan Shoemaker, Ph.D., William Arthur Conklin, Wm Arthur Conklin, "Cyber security: The Essential Body of Knowledge", Cengage Learning, 2012.

REFERENCES

1. Ali Jahangiri, "Live Hacking: The Ultimate Guide to hacking Techniques & Counter measures for Ethical Hackers & IT Security Experts", 2009.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

8 Hours

8 Hours

10 Hours

9 Hours

10 Hours

170	CYCC0	3	N	ETWO	ORK SI	ECUR	ITY A	ND		(Category	/ L	Т	Р	Credit
				Μ	ANAG	EME	NT					3	0	0	3
	ourse p raphy a	lgorith	ms, has	sh func	tions, d					inageme ithentica		epts. Stu	idents	will le	arn about
COUR	SE OBJ	JECTI	VES												
1	To un	derstar	nd the c	concept	s in net	twork s	ecurity	and m	anagen	nent					
2	To study public key crypto systems														
3	To study about hash functions														
4	To study MAC codes and digital signatures														
5	To stu	ıdy use	er authe	enticatio	on										
COUR	SE OU	ГСОМ	IES												
On the s	successi	ful con	npletion	n of the	course	e, stude	nts wil	l be ab	le to						
CO1: 1	Underst	and ne	twork s	security	and m	anagen	nent co	oncepts				Remem	ber an	d Unde	erstand
CO2: 1	Underst	and an	d apply	public	key cr	yptogra	aphy					Understand and apply			
CO3: 1	Underst	and an	d apply	hash f	unctior	ıs						Underst	and an	d appl	у
CO4: 1	Underst	and an	d apply	MAC	codes a	& digit	al signa	atures				Underst	and an	ıd appl	у
CO5: /	Apply u	ser aut	hentica	tion te	chnique	es						Apply			
MAPP	ING W	ITH P	ROGR	AMM	E OUI	ГСОМ	ES AN	D PR	OGRA	MME S	PECIF	IC OUT	COM	ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	S	М	-	-	-	-	S	-	-	-	М	М	М	S	М
CO2	М	Μ	S	М	-	-	-	-	-	-	L	Μ	S	-	-
CO3	М	Μ	М	М	-	Μ	-	L	-	-	L	-	S	M	
CO4	М	S	Μ	-	-	М	-	-	-	М	-	Μ	-	M	
CO5	M	M	-	-	S	М	-	L	-	-	М	М	-	-	М
S- Stror	ng; M-N	1edium	n; L-Lo	W											

UNIT I - INTRODUCTION 11 Hours Definitions & challenges of security, OSI security architecture, attacks & services. Firewalls, Types of Firewalls, Cryptography & cryptanalysis. Classical encryption techniques, substitution techniques, transposition techniques. Block ciphers, DES, AES structure, multiple encryption-triple DES **UNIT II - PUBLIC KEY CRYPTO SYSTEMS** 11 Hours Number theory fundamentals, principles of pubic key crypto systems, RSA algorithm, Strength of RSA, Diffie-Hellman key exchange, Elliptic curve cryptography. Symmetric key distribution using symmetric and asymmetric encryptions, distribution of public keys, X.509 Certificates **UNIT III - HASH FUNCTIONS** 8 Hours Cryptographic hash functions, applications, security requirements, hash function based on block chaining, Secure Hash Algorithm (SHA). **UNIT IV - MAC CODES AND DIGITAL SIGNATURES** 7 Hours MAC, security requirements, HMAC, CMAC, key wrapping, Digital signatures **UNIT V - USER AUTHENTICATION** 8 Hours Remote user authentication, symmetric and asymmetric encryptions for user authentications, Kerberos, identity management & verification. **TEXT BOOKS** 1. William Stallings, Cryptography & Network Security-Principles and Practices, Sixth Edition, Pearson Publishers, 2014. 2. Christof Paar & Jan Pelzl, Understanding cryptography, Heidelberg, Springer 2014.

- REFERENCES
 - 1. Bragg et al., Network security The complete reference, Tata Mc Graw Hill, 2012.

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

15030004		Category	L	Т	Р	Credit					
17CYCC04	NETWORK SECURITY LAB		0	0	4	2					
PREAMBLE This course provides basic knowledge to install, configure and run network security tools.											
PRERQUISITE: Computer Networks											
COURSEOU	TCOMES										

COURSE OUTCOMES										
On the successful completion of the cour										

On the successful completion of the course, students will be able to	
CO1. Install, configure, run virtualization tools, SNORT	Understand and Apply
CO2. Perform port scanning using NMAP	Understand and Apply
CO3. Analyze network traffic	Understand and Apply
CO4. Perform security auditing	Understand and Apply
CO5. Demonstrate asymmetric/symmetric algorithms, digital signatures,	Apply
honeypots, etc.,	

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	DO1	DO2	DO2		DOS	DOG	DO7		DOO	DO10	PO1	PO	PSO	PS	PS
COS	PO1	PO2	P03	PO4	P05	PU0	PO7	PU8	P09	PO10	1	12	1	O2	O3
CO1	S	S	L	-	-	-	-	-	-	-	-	-	М	L	Μ
CO2	М	М	L	-	-	-	-	-	-	-	-	-	М	М	
CO3	S	М	М	-	-	-	-	-	-	-	-	-	S	М	М
CO4	S	М	М	-	-	-	-	-	-	-	-	-	S	М	
CO5	S	М	М	-	-	-	-	-	-		-	-	S	М	
S Stro	S. Strong: M. Medium: L. Low														

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

1.Learn to install Virtual Box /VM ware or any other equivalent software on the host operating system

2. Perform experiments for port Scanning with NMAP, Superscan or any other software.

3. Using NMAP i) Find open ports on a system ii) Find active machines iii) Find the Operating systems, software's, installed in remote systems.

4. Perform experiment to demonstrate how sniff for router traffic using wireshark tool.

5. Perform security auditing using any open source security auditing tools like SomarSoft's Dumpsec.

6. Perform wireless audit of an access point/router using any open source software tools like NetStumbler.

7. Perform experiment on sniff traffic using ARP poisoning.

8. Demonstrate asymmetric / symmetric crypto algorithms, hash and digital signatures using JCRYPT Tool or any other equivalent software's.

9. Demonstrate Intrusion Detection Systems (IDS) using SNORT any other equivalent software tools.

10. Setup Honey Pot and monitor honypot using KF sensor or any other equivalent software.

REFERENCES:

- 1. NMAP Network Scanning by Gordon Fydor Lyon, Published by Insecure.com LLC.
- 2. Wireshark network analysis, second edition, by Laura Chappell,
- 3. https://www.vmware.com/in/products/workstation-pro/workstation-pro-evaluation.html
- 4. <u>https://nmap.org/</u>
- 5. https://www.systemtools.com/somarsoft/index.html?somarsoft.com
- 6. <u>http://www.netstumbler.com/downloads/</u>
- 7. <u>https://www.cryptool.org/de/jcryptool</u>
- 8. https://www.snort.org/
- 9. http://www.keyfocus.net/kfsensor/

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

170	CYCCO	95		ETH	ICAL	HAC	KING				Categor	L	Т	Р	Credit
												3	0	0	3
PREAM				1	1 1									•	
To co techniq	-				-	about	ethica	al hack	ang. S	students	s will le	earn abo	out va	rious t	ools and
PRERI						and Ma	anager	nent							
					•		U								
COUR	SE OI	BJEC	FIVES	5											
1	To u	ndersta	and typ	bes of e	ethical	hackir	ng								
2	To st	udy va	rious l	hackin	g techi	niques									
3	To u	ndersta	and we	b secu	rity										
4	To u	ndersta	and wi	reless	networ	k hack	ting								
5	To di	scuss	about s	securit	y tools	and it	s appl	ication	IS						
COUR	SE OI	UTCO	MES												
On the	succes	sful co	mplet	ion of	the co	urse, st	tudent	s will l	be able	e to					
CO1:	Γομης	laretan	d diffe	aront ta	mas of	Hack	na					Unders	tand		
				-	-		-								
CO2:	Γo unc	lerstan	d and	apply	various	s hacki	ng tec	hnique	es.			Unders	tand a	nd app	oly
CO3:	Γo ide	ntify a	nd pre	vent w	ebsite	hackir	ng					Unders	tand a	nd app	oly
CO4:	Γo ide	ntify a	nd pre	vent w	ireless	netwo	ork had	cking.				Unders	tand a	nd app	oly
CO5: 7	Го арр	ly info	ormatio	on secu	urity to	ols in	real ti	me				Apply			
MAPP	ING V	VITH	PROG	GRAM	IME (OUTC	OME	S ANI) PRO	GRAN	IME S	PECIFI	ίς οι	ITCO	MES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12	PSO1	PSO	
<u>CO1</u>	~						~				1 M	м	М	6	3
CO1 CO2	<u>S</u>	M	- S	- N/	-	-	S	-	-	-	M L	M M	M S	S	M
CO2 CO3	<u> </u>	M M	<u> </u>	M M	-	- M	_	L	-	-	L	-	S	M	S
CO4	M	S	M	-	_	M	-		-	М	-	М	-	M	-
CO5	M	М	-	-	S	M	-	L	-	-	М	М	-	-	М
S- Stroi	ng; M-	Mediu	ım; L-1	Low											

UNIT I – INTRODUCTION Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

UNIT II - HACKING TECHNIQUES

Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems- Windows & Linux, Application Hacking, Foot printing, Scanning, and Enumeration. Implementing System Level Hacking- Hacking Windows & Linux.

UNIT III - WEB SECURITY

Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SQL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

UNIT IV - WIRELESS NETWORK HACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler.

UNIT V- APPLICATIONS

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

TEXT BOOKS

1. Kali Linux cook book by Corey P.Schultz, Bob Perciaccante, Second Edition, Packt Publishing, 2017. 2. Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: Network Security Secrets & Solutions", Seventh edition, McGraw-Hill Publisher, 2012.

3. Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, 2007.

4. Dafydd Stuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws" Wiley Publications, 2007.

5. Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmillan publishers India Ltd, 2006.

REFERENCES

1. Hossein Bidgoli, "The Handbook of Information Security" John Wiley & Sons, Inc., 2005.

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

9 Hours

8 Hours

10 Hours

11 Hours

7 Hours

		Category	L	Т	Р	Credit
17CYCC06	ETHICAL HACKING LAB		0	0	4	2
PREAMBLE	,	l				
This course pr	ovides basic knowledge to install, configure	e kali linux and ex	kplore ka	ali lin	ux too	s for ethical
hacking.						
PRERQUISI	TE: Computer Networks					
COURSE OU						
On the success	sful completion of the course, students will	be able to				
CO1. Install, c	configure, run virtualization tools and kali l	inux	1	Unde	rstand	and Apply
CO2. Use info	ormation gathering tools		J	Jnder	stand a	and Apply
CO3. Use ex	ploitation tools		l	Jndei	stand a	and Apply
CO4. Use sni	ffing and spoofing tools		U	Jndei	stand a	and Apply
CO5. Use for	ensics and social engineering tools		A	Apply	7	
MAPPING W	VITH PROGRAMME OUTCOMES ANI	D PROGRAMM	E SPEC	IFIC	COUT	COMES

COS	DO1	DOJ	DO2		DOS	DOC	DO7		DOO	DO10	PO1	PO	PSO	PS	PS
COS	PO1	PO2	PO3	P04	P05	PU0	P07	PO8	PO9	PO10	1	12	1	O2	O3
CO1	S	S	L	-	-	-	-	-	-	-	-	-	М	L	М
CO2	М	М	L	-	-	-	-	-	-	-	-	-	М	М	
CO3	S	М	М	-	-	-	-	-	-	-	-	-	S	М	М
CO4	S	М	М	-	-	-	-	-	-	-	-	-	S	М	
CO5	S	М	М	-	-	-	-	-	-		-	-	S	М	
S_Stro	ng M	Mediu	m• I_I	OW											

S- Strong; M-Medium; L-Low

LIST OF EXPERIMENTS

1.Learn to install Virtual Box /VM ware or any other equivalent software on the host operating system

- 2. Learn to install and configure kali Linux in virtual environment.
- 3. Exploring information gathering tools like arp-scan, nmap, theHarvester, etc.,.
- 4. Exploring exploitation tools like sqlmap, metasploit framework, etc
- 5. Exploring sniffing and spoofing tools like wireshark, wifi honey, bettercap, etc.
- 6. Exploring Forensic tools like Binwalk, bulk-extractor
- 7. Exploring wireless attacks like Aircrack-ng, Airmon-ng, etc..
- 8. Exploring social engineering tools.

REFERENCES:

- 1. Kali Linux cook book by Corey P.Schultz, Bob Perciaccante, Second Edition, Packt Publishing, 2017.
- 2. https://www.kali.org/downloads/

		os://statio			I				D (.1.*	15.1%		Ŧ			
	<u>cdr</u> pdf		wnloac	ls/Kalı	Linux ²	Assuri	ingSec	urityby	Penetra	ationTestin	ng thire	dEditio	n_Colo	rimages			
	-		v.vmwa	are.con	n/in/pro	oducts/	workst	tation-	pro/woi	rkstation-p	ro-eval	uation.	html				
CO	URSE	DESIG	NERS							· · ·							
S.N	o Na	me of th	e Facul	lty T	Designa	ation			Depart	ment	Mail I	σ					
1		.R.Jaich		-	profess				CSE	ment	rjaichandran@avit.ac.in						
1.00										Catagory	U	T		Credit			
17CS	CC13	DA'I	'A WAI		USING NING	AND	DATA			Category							
REAMB										CC	3	0	0	3			
nong scie REREQ	entists o UISITI	ses It is a of various E: DATA C TIVES	s discipli BASE I	ines.		Ĩ	2	a of res	earch a	nd develop	ment wh	nich has	created	interest			
				6		· 1 1	1		1	• • • •	1	<u> </u>	1 .	1 .			
		i data wai or large co			n opera	tional d	latabase	e systen	n, and aj	ppreciate th	e needs	for dev	eloping	a data			
	the the	problems	s and pro		involv	ed in th	e devel	opment	t of a da	ta warehou	se						
		problems		ocesses				opment	t of a da	ta warehou	se						
3. To ex	plain th	e process		ocesses				opment	t of a da	ta warehou	se						
3. To ex OURSE	plain th	e process OMES	s of data	ocesses a minin	g and it	s impor	tance.		t of a da	ta warehou	se						
3. To ex OURSE	plain th	e process OMES	s of data	ocesses a minin	g and it	s impor	tance.		t of a da	ta warehou	se						
3. To ex OURSE n the suc	plain th OUTC	ne process OMES completi	s of data	ocesses a minin e cours	g and it e, stude	s impor ents will	tance. l be abl	e to	t of a da		se	und					
3. To ex OURSE n the suc O1:. To	plain th OUTC cessful underst	e process OMES completi and the b	s of data on of th asics of	ocesses a minin e cours data w	g and it e, stude arehous	s impor ents will sing and	tance. l be abl	e to g				und					
3. To ex OURSE Image: To ex In the success 01:. O1:. To ex O2: To 1	plain th OUTC cessful underst earn the	e process OMES completi and the b e data pre	s of data on of th asics of	ocesses a minin e cours data w ing, lan	g and it e, stude arehous iguage,	s impor ents will sing and archited	tance. l be abl	e to g		tion.	Jndersta	and					
3. To ex COURSE On the succ On the succ O1:. To CO1:. To I CO2: To I CO3: To I	plain the OUTC cessful underst earn the	e process OMES completi and the b e data pre e associat	s of data on of th asics of process	ocesses a minin e cours data w ing, lan s and it	g and it e, stude arehous iguage, is algori	s impor ents will sing and archited thms.	tance. l be abl l mining ctures, o	e to g concept	t descrip	otion.	Jndersta Apply	nd					
3. To ex COURSE On the succonduction On the succonduction CO1:. To and a succonduction CO2: To and a succonduction CO2: To and a succonduction CO3: To and a succonduction CO3: To and a succonduction CO3: To and a succonduction CO3: To and a succonduction CO3: To and a succonduction CO3: Co and a succonduction CO3: Co and a succonduction Co and a succonduction <thco a="" and="" succonduction<="" th=""> Co and a succonduction<!--</td--><td>plain the OUTC cessful underst earn the earn the</td><td>e process OMES completi and the b e data pre e associat</td><td>s of data on of th asics of process ion rule cation an</td><td>e cours data w ing, lan s and it d clust</td><td>g and it e, stude arehous aguage, s algori ering ru</td><td>s impor ents will sing and archited thms. iles and</td><td>tance. l be abl l mining ctures, o l the res</td><td>e to g concept</td><td>t descrip</td><td>otion. A hms A</td><td>Jndersta Apply Apply</td><td></td><td></td><td></td></thco>	plain the OUTC cessful underst earn the earn the	e process OMES completi and the b e data pre e associat	s of data on of th asics of process ion rule cation an	e cours data w ing, lan s and it d clust	g and it e, stude arehous aguage, s algori ering ru	s impor ents will sing and archited thms. iles and	tance. l be abl l mining ctures, o l the res	e to g concept	t descrip	otion. A hms A	Jndersta Apply Apply						
3. To ex COURSE COURSE On the succ CO1:. To CO2: To 1 CO3: To 1 CO4: To 1 CO5:T	plain the OUTC cessful underst earn the earn the co know	e process OMES completi and the b e data pre e associat e classific y the lates	s of data on of th asics of processi- tion rule cation an	e cours data w ing, lan s and it about	g and it e, stude arehous guage, s algori ering ru the data	s impor ents will sing and archited thms. iles and wareho	tance. l be abl l mining ctures, o l the res	e to g concept spective and mir	t descrip algorith	otion. A hms A	Jndersta Apply Apply Apply Jndersta	und					
3. To ex OURSE OURSE OI in the succonstruction O O1:. To O2: To O3: To O4: To CO5: T IAPPING O OS PO1	plain the OUTC cessful underst earn the earn the o know G WIT	e process OMES completi and the b e data pre e associat e classific the lates H PROG	s of data on of th asics of processi- tion rule cation an	e cours data w ing, lan s and it about	g and it e, stude arehous guage, s algori ering ru the data	s impor ents will sing and archited thms. iles and wareho	tance. l be abl l mining ctures, o l the res	e to g concept spective and mir	t descrip algorith ning MME S	otion. A hms A PECIFIC	Jndersta Apply Apply Apply Jndersta	und					
3. To ex OURSE OURSE On the suc O1:. To O2: To O3: To O3: To O3: To O4: To O5:11 IAPPING O5 PO1 C01 S	plain the OUTC cessful underst earn the earn the o know G WIT	e process OMES completi and the b e data pre e associat e classific the lates H PROG	s of data on of th asics of process ion rule ation an st trends RAMN	e cours data w ing, lan s and it ad clust AE OU	g and it e, stude arehous guage, s algori ering ru the data TCOM	s impor ents will sing and archited thms. lles and wareho IES AN	tance. l be abl l mining ctures, o l the res ousing a D PRO	e to g concept spective and mir DGRAN	t descrip algorith ning MME S	otion. 4 hms 4 PECIFIC	Jndersta Apply Apply Apply Jndersta OUTCO	und DMES	- PSO2 M				
3. To ex OURSE OURSE on the suc O1:. To 1 O2: To 1 O3: To 1 O4: To 1 O4: To 1 O5: To 1 O4: To 1 CO5: To 1 CO1: S CO2: S	plain the outroe cessful underst earn the earn the earn the for know G WIT	e process OMES completi and the b e data pre e associat e classific the lates H PROG	s of data on of th asics of processi- cion rule cation an st trends FRAMN PO4 M M	e cours data w ing, lan s and it about IE OU PO5	g and it e, stude arehous guage, s algori ering ru the data TCOM	s impor ents will sing and archited thms. lles and wareho IES AN	tance. l be abl l mining ctures, o l the res ousing a D PRO	e to g concept pective and mir DGRAN PO9	t descrip algorith ning MME S PO10	btion. 4 hms 4 PECIFIC 0 PO11	Jndersta Apply Apply Apply Jndersta OUTCO	and DMES PSO1		PSO3			
3. To ex COURSE COURSE on the succonstruction CO1:. To CO2: To 1 CO2: To 1 CO3: To 1 CO3: To 1 CO4: To 1 CO5:T IAPPINO CO5 CO1 S CO2 S CO3 S	oUTC cessful underst earn the earn the G WIT D know G WIT L L M L	ie process OMES completi and the b e data pre e associat e classific v the lates H PROG 2 PO3 M	s of data on of th asics of process ion rule ation an st trends RAMM PO4 M M L	e cours data w ing, lan s and it about IE OU PO5	g and it e, stude arehous guage, s algori ering ru the data TCOM	s impor ents will sing and archited thms. lles and wareho IES AN	tance. l be abl l mining ctures, o l the res ousing a D PRO	e to g concept pective and mir DGRAN PO9	t descrip algorith ning MME S PO10	btion. 4 hms 4 PECIFIC 0 PO11	Jndersta Apply Apply Apply Jndersta OUTCO	M M M M M M	M M M	PSO3 M M M			
3. To ex COURSE COURSE On the succonstruction CO1:. To CO1:. To CO CO CO2: To I CO3: To I CO3: To I CO3: To I CO4: To I CO5: To I CO5: To I CO1: S CO1: CO1: S CO1: CO2: S CO1:	plain the outroe cessful underst earn the earn the earn the for know G WIT	e process OMES completi and the b e data pre e associat e classific the lates H PROG 2 PO3	s of data on of th asics of processi- cion rule cation an st trends FRAMN PO4 M M	e cours data w ing, lan s and it about IE OU PO5	g and it e, stude arehous guage, s algori ering ru the data TCOM	s impor ents will sing and archited thms. lles and wareho IES AN	tance. l be abl l mining ctures, o l the res ousing a D PRO	e to g concept pective and mir DGRAN PO9	t descrip algorith ning MME S PO10	btion. 4 hms 4 PECIFIC 0 PO11	Jndersta Apply Apply Apply Jndersta OUTCO	Ind DMES PSO1 M M	M M	РSO3 М М			

INTRODUCTION AND DATA WAREHOUSING

Introduction, Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Implementation, Further Development, Data Warehousing to Data Mining.

DATA PREPROCESSING, LANGUAGE, ARCHITECTURES, CONCEPT DESCRIPTION

Why Preprocessing, Cleaning, Integration, Transformation, Reduction, Discretization, Concept Hierarchy Generation, Data Mining Primitives, Query Language, Graphical User Interfaces, Architectures, Concept Description, Data Generalization, Characterizations, Class Comparisons, Descriptive Statistical Measures.

ASSOCIATION RULES

Association Rule Mining, Single-Dimensional Boolean Association Rules from Transactional Databases, Multi-Level Association Rules from Transaction Databases.

CLASSIFICATION AND CLUSTERING

Classification and Prediction, Issues, Decision Tree Induction, Bayesian Classification, Association Rule Based, Other Classification Methods, Prediction, Classifier Accuracy, Cluster Analysis, Types of data, Categorization of methods, Partitioning methods, Outlier Analysis.

RECENT TRENDS

Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Databases, Multimedia Databases, Time Series and Sequence Data, Text Databases, World Wide Web, Applications and Trends in Data Mining.

TEXT BOOK

1. J. Han, M. Kamber, "Data Mining: Concepts and Techniques", Harcourt India / Morgan Kauffman, 2001.

REFERENCES

- 1. Margaret H.Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education 2004.
- 2. Sam Anahory, Dennis Murry, "Data Warehousing in the real world", Pearson Education 2003.
- 3. David Hand, Heikki Manila, Padhraic Symth, "Principles of Data Mining", PHI 2004.
- 4. W.H.Inmon, "Building the Data Warehouse", 3rd Edition, Wiley, 2003.
- 5. Alex Bezon, Stephen J.Smith, "Data Warehousing, Data Mining & OLAP", MeGraw-Hill Edition, 2001.
- 6. Paulraj Ponniah, "Data Warehousing Fundamentals", Wiley-Interscience Publication, 2003.

S. No	Name of the Faculty	Designation	Department	Mail ID
1	Mr. S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
2.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in

17AICC09	FOUNDATIONS OF DATA SCIENCE	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBLE

Data Science is about drawing useful conclusions from large and diverse data sets through exploration, prediction, and inference. Exploration involves identifying patterns in information. Prediction involves using information we know to make informed guesses about values we wish we knew. Inference involves quantifying our degree of certainty. The primary tools for exploration are visualizations and descriptive statistics, for prediction are machine learning and optimization, and for inferencearestatisticaltestsandmodels. Throughunderstandingaparticulardomain, the students

learntoaskappropriatequestionsabouttheirdataandcorrectlyinterprettheanswersprovidedby inferential and computationaltools **PREREQUISITE**

NIL

COURS	SE OBJ	ECTIV	/ES												
1.	To obta	in a Co	mprehe	ensive k	nowled	ge of v	arious t	ools ar	d tech	niques f	or Data tr	ansformat	tion and	visualiz	ation
2.	To lear	n the pr	obabili	ty and p	orobabil	istic mo	odels of	fdatasc	ience						
3.	To lear	n the ba	sic stat	istics ar	nd testir	ng hypo	thesis f	for spec	ific prol	blems					
4.	To lear	n about	the pre	diction	models										
COURS	SE OUT	COM	ES												
On the s	uccessf	ul comp	oletion	of the c	ourse, s	tudents	will be	e able to	1						
CO1: T enable f			ow to a	pply pre	e-proces	ssing te	chnique	es to co	nvert ra	w data :	so as to	Understa	nd		
CO2: T visualiza				-	ratory d	ata ana	lysis an	d create	e insigh	tful		Understa	nd		
CO3: T of rando					-	•	•					Understa	nd		
CO4: To of certai								nce and	analyze	the deg	gree	Understa	nd		
СО5: Т	o introd	uce ma	chine le	earning	algorith	nms for	predict	ion and	to deriv	ve insig	hts	Understa	nd		
								PROG	RAMM		CIFIC O	UTCOM	ES		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S S	-	-	M	-	-	-	-	-	-	-	-	M	M	M
CO2 CO3	S	М	М	М	-	-	-	-	-	-	-	-	M	M	M
CO3	S	- M	- M	- M	-	-	-	-	-	-	-	-	M M	M M	M S
C04 C05	S	M	M	IVI	-	-	-	-	-	-	-	-	M	M	S S
S- Stron				,	-	-	-	_	-	-	-		171	141	5

COU	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.	Dr.M. Nithya	Professor	CSE	nithya@vmkvec.edu.in

SYLLABUS	

	D UD														
INTRA	PLET	ON: W	hat is	at a Sci	ensel f	Big Bsta	USIGNE	ata Sei	RSN-I	Datafica	.Ganegony	rent lands	caffe of	p E rspe C	Treedsit
Skill se	ets need	led; Ma	trices -	Matrice	es to rej	present	relatio	ns betw	een dat	a, and r	necessary	lihear alg	ebraic of	peration	s on
natrices	<u>Approximate Approximate Appro</u>	oximate	<u>ely repr</u>	esenting	<u>g matri</u>	ces by	decom	positior	ns (SVI) and H	PCA); Sta	tistics: D	escriptiv	e ⁰ Statis	tics:
Istribut		d prob	ability	- Stati	stical 1	Inference	e: Pop	pulation	s and	sample:	s - Statis	stical moo ta. You w s, predict f	leling -	probab	ility
listribut data for	ions - fi r analys	iting a	model -	Hypot nple stat	hesis Te	esting -	Intro ^t to	o R/ Pyt	hon. ngful d	ata visu	alizations	s. predict f	future tre	ends from	n data
and mo	ore.														
						0		U				ta Transf			
PRER	EQUIS		ROGR	AMM	NGUN	FYPH C	NCon	fusion 1	natrix,	Student	s T-tests	and ROC	curves-	-Explora	tory
	•			ots, grap	ohs and	summa	ry stati	stics) of	EDA,	Philosoj	phy of ED	OA - The D	ata Scie	nce Proc	cess.
	RSE OB				CODI	TIM	• •	aistian	Dula m	inina	I in con De	amagaiam	Locistic	Deemee	aion
MARCE 1Classif	Underst	tand the	t basics	in Pyth	on prog	grammi	: Asso	erms of	constru	cts con	trol stater	egression- ments, stri ole Metho	ng funct	ions	sion rost
20rests	To"lear datasets	n to us	e Panda	s DataF	rames,	Numpy	multi	dimetri	ional ar	rāys, ar	ld'SciPy I	ibraries to	°₩ork ₩	ith a var	ious
			1			1'1	1	• • • •	•	1 1	• 1	. 1		1.	1
3 CLUST	To lear	n about : Choo	pandas sing di	, an ope stance r	en-source netrics	- Differ	y, and ent clu	we will stering	use it t approa	ches - h	manipula ierarchica	te, analyze al agglome	e, and vi erative c	sualize o	cool g. k-
												icy and qu machine l			
	build sr							arn, and	we wil	i use so	The of its i	machine	earning	argorium	ns to
	SEVA							ols for d	ata visu	alizatio	n.				
	success		•	of the	course,	student	s will ł	be able t	t0						
	ENCE			Derth		•						TT- 1- met	1		
cor: (statemb	Underst	and the	basics Magach	in Pytho el Schu	on prog tt " Do	rammın ing Dat	g in tei a Scier	rms of c ace Stra	construction of the second s	ts, cont alk Fron	rol 1 The Fro	Understantline", O		2014	
	, •	U				-			-			niques", j	÷		SBN
	10 use 1)112 38 14			unes, n	umpyn	numi-un	nentro	11a1-a11a	уздани	SULLA	ional les te	Underst	and 22		
an. A	Mohamr	ned J. Z	Zaki an	d Wagn	er, Mie	ra Jr , "I	Data₁M	lining, a	nd Ana	lysis: F	undament	al Concer	ts and A	Algorith	ns",
analyze	o use p Cambrid	andas, a gealini	an open versitya	-souree Press 2	014.	, and we	e will t	1se 19to	Ioad, n	lanipula	ite,	al Concer Underst	and	U	Í
$\frac{4}{4}$	Matt Ha	rrison,	"Learn	ing the	Pandas	s Librai	y: Pyt	họn To	ols for	Data N	Aunging,	Analysis,	and Vi	sualizati	on ,
CO4:	To use s DReilly	2016.	arn, and	d we wi	II use so	ome of a	its mac	thine lea	arnıng a	lgorithi	Aunging, ns to	Apply			
				AMAN	Serate	E GME	Princip	PRO	RXthe	WESP	eithypyled	DUTCON	/IES		
6 V COs	ING W Ves Mc PO1 012	Kinney	"Pythe	on for E	hata An	alysis: I	Data W	ranglin	g with	Pandas.	NumPy, PO11	and IPythe PO12	n <u>" O'R</u>	eilly Me	dia. PSO
\cos_2	0121	102	105	104	105	100	10/	100	103	1010	1011	1012	1501	1302	150
CO1	S	М	S	-	М	-	-	-	-	-	-	М	S	S	М
COUR	SE DE	SIGNI	ERS	-	М	-	-	-	-	-	-	М	М	S	М
<u>\$.</u> 930.	S N	ante o	f the	- De	esignat	ion	D	epartn	nent	-	-	Mail	DS	-	M
CO4		acMty		-	M	-	-	-	-	-	-	М	S	S	M
S-Stro	ng _D M _R	Astina	idran o	v	Profes	sor			CSE		rj	aichadran	@gmail.	.com	T
2.	Mr.M.A	Annama	alai	Assista	nt Profe	essor	CS	E				im@vmk	·		
۷.															

174	AICC10			BIG	G DATA ANALYTICS							L	Т	Р	Credit
											CC	3	0	0	3
	urse cov										tics. This stry and re				oncepts,
	E QUISI ABASE		GEME	NT SY	STEM										
COUR	SE OBJ	ECTIV	ES												
1	To un	derstan	d how t	oig data	analyti	cs can l	everage	e into a	key con	nponent					
2	To un	derstan	d the bi	g data t	ools wi	th their	applica	tions							
3	To un	derstan	d the bi	g data r	eports f	for the e	existing	tools							
4	To un	derstan	d the bi	g data a	pplicati	ions like	e Mong	goDB, C	Cassandi	ra and H	live.				
COUR	SE OUT	ГСОМІ	ES												
On the	successf	ul com	oletion of	of the co	ourse, s	tudents	will be	able to							
CO1: 1	Understa	and the	basics o	of digita	l data a	nd intro	oduction	n to big	data			Underst	and		
CO2: .	Analyze	the bas	ic big d	ata chal	lenges,	import	ant and	techno	logies.			Analyze	2		
	Solve big				nges wi	th the h	elp of I	Hadoop	and Mo	ongoDB		Apply			
	Analyze				/longoE	DB, Cas	sandra	and Hiv	re.			Analyze	2		
CO5: /	Analyze	Pig and	l Hive i	n terms	of proc	essing	and to c	lesign J	asperRe	eports.		Analyze	e		
MAPP	ING WI	TH PR	ROGRA	MME	OUTC	OMES	AND I	PROGI	RAMM	E SPEC	CIFIC OU	JTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
	S	Μ	L	-	М	-	-	-	-	-	-	М	S	М	М
CO2				_	Μ	-	-	-	-	-	-	Μ	S	Μ	Μ
CO3	S	М	L	-											1
		M M M	L L L	-	M M	-	-	-	-	-	-	M M	S S	M M	M M

DIGITAL DATA AND INTRODUCTION TO BIG DATA

Types of Digital Data - Structured Data - Semi-Structured Data - Unstructured Data - Introduction to Big Data - What is Big Data - Why Big Data - Traditional Business Intelligence (BI) versus Big Data - Typical Hadoop Environment -Changes in the Realms of Big Data - Coexistence of Big Data and Data Warehouse.

BIG DATA ANALYTICS

What's in Store? - Big Data Analytics - Classification of Analytics - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Big Data Analytics Important - Technologies for Meet the Challenges Posed by Big Data - Data Science - Data Scientist - Big Data Environment - Analytics Tools.

HADOOP

Introduction to Hadoop - Hadoop Components - Hadoop Conceptual Layer - High Level Architecture of Hadoop -Business Value of Hadoop -Hadoop Distributed File System - Processing Data with Hadoop - MapReduce Daemons -MapReduce working - MapReduce Example - Managing Resources and Application with Hadoop YARN - Hadoop Ecosystem.

MONGODB, CASSANDRA AND HIVE

MongoDB - RDBMS and MongoDB - Data Types in MongoDB-CRUD- Introduction to Apache Cassandra - Features of Cassandra - CQL Data Types -CQLSH- Keyspaces-CRUD-Collections- Using a Counter - Time To Live (TTL)-Alter - Import and Export - Export to CSV - Import from CSV - Import from STDIN - Export to STDOUT - System Tables - Practice Examples - Introduction to Hive - Hive Architecture - Hive Data Types - Hive File Format - Hive Query Language - RCFILE Implementation - SERDE - UDF.

PIG AND JASPER REPORTS

Anatomy of Pig - Pig on Hadoop - Pig Philosophy - Use Case for Pig: ETL Processing - Pig Latin Overview - Data Types in Pig - Running Pig - Execution Modes of Pig - HDFS Commands - Relational Operators - Eval Function - Complex Data Type - Piggy Bank - UDF (User Defined Function) - Parameter Substitution - Diagnostic Operator - Word Count Example - When to use Pig? - When NOT to use Pig? - Pig at Yahoo - Pig versus Hive - Hive Vs Pig - Introduction to Jasper Reports, Jaspersoft Studio - Connecting to MongoDB NoSQL database - Connecting to Cassandra NoSQL Databases

TEXT BOOKS

- 1. Big Data and Analytics Seema Acharya and Subhashini C Wiley India
- 2. Big data for dummies Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman
- 3. Hadoop: The Definitive Guide by Tom White
- 4. Hadoop in action Chuck Lam
- 5. Hadoop for dummies Dirk Deroos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown

REFERENCES

- 1. Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
- Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007
 Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 4. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.
- 6. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analy
- 7. tics", Wiley and SAS Business Series, 2012

	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2.	Dr.M. Nithya	Professor	CSE	nithya@vmkvec.edu.in

17/	AICC11		B	IG DA	TA AN	ALYT	TCS L	AB			Category	L	Т	Р	Credit
											CC	0	0	4	2
	urse cov				-		-		•	•	tics. This stry and 1		· ·		concepts,
	E QUISI ' A WARI		SING A	ND DA	TA MI	NING									
COUR	SE OBJ	ECTIV	/ES												
1	To un	derstan	d how t	oig data	analyti	cs can	leverag	e into a	key co	mponen	t				
2	To un	derstan	d the bi	g data t	ools wi	th their	applica	ations							
3	To un	derstan	d the bi	g data r	eports	for the	existing	g tools							
4	To un	derstan	d the bi	g data a	pplicat	ions lik	e Mong	goDB, (Cassand	ra and I	Hive.				
COUR	SE OUI	COM	ES												
On the	successf	ul com	oletion	of the c	ourse, s	tudents	will be	e able to)						
CO1: 1	Understa	nd the	basics o	of digita	l data a	nd intro	oductio	n to big	data			Underst	and		
CO2:	Analyze	the bas	ic big d	ata cha	llenges,	, impor	tant and	l techno	logies.			Analyze	e e e e e e e e e e e e e e e e e e e		
	Solve big				nges wi	th the h	nelp of]	Hadoop	and M	ongoDE	3	Apply			
	Analyze				AongoI	DB, Cas	sandra	and Hi	/e.			Analyze	;		
CO5: /	Analyze	Pig and	l Hive i	n terms	of proc	cessing	and to	design.	asperR	eports.		Analyze	;		
	-	-			_	_		_	_	_	CIFIC O	UTCON	AES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	Μ	М
CO3	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO4	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO5	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
S- Stroi	ng; M-M	edium;	L-Low												

LIST OF EXPERIMENTS

- 1. Install, configure and run Hadoop and HDFS
- 2. Implement word count / frequency programs using MapReduce
- 3. Implement an MR program that processes a weather dataset R
- 4. Implement Linear and logistic Regression
- 5. Implement SVM / Decision tree classification techniques
- 6. Implement clustering techniques
- 7. Visualize data using any plotting framework
- 8. Implement an application that stores big data in Hbase / MongoDB / Pig using Hadoop / R.

TEXT BOOKS

- 1. Big Data and Analytics Seema Acharya and Subhashini C Wiley India
- 2. Big data for dummies Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman
- 3. Hadoop: The Definitive Guide by Tom White
- 4. Hadoop in action Chuck Lam
- 5. Hadoop for dummies Dirk Deroos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown

REFERENCES

- 1. Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007
- Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
 Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.
- Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012

SYLLABUS PYTHON PROGRAMMING:

Python Basics: Your first program – Types - Expressions and Variables - String Operations - Python Data Structures: Lists and Tuples – Sets – Dictionaries - Python Programming Fundamentals: Conditions and Branching – Loops – Functions - Objects and Classes - Working with Data in Python: Reading files with open Writing files with open - Loading data with Pandas - Working with and Saving data with Pandas

IMPORTING DATASETS

Learning Objectives - Understanding the Domain - Understanding the Dataset - Python package for data science - Importing and Exporting Data in Python - Basic Insights from Datasets – Cleaning and preparing the data - Identify and Handle Missing Values - Data Formatting - Data Normalization Sets – Binning - Indicator variables - Summarizing The Data Frame - Descriptive Statistics - Basic of Grouping – ANOVA – Correlation - More on Correlation -

PROBABILITY AND STATISTICS:

Introduction to probability - Sampling and sampling distributions - Hypothesis testing - Two sample testing and introduction to ANOVA - Two way ANOVA and linear regression - Linear regression and multiple regression - Concepts of MLE and Logistic regression - ROC and Regression Analysis Model Building - χ^2 Test and introduction to cluster analysis Clustering analysis - Classification and Regression Trees (CART)

MODEL DEVELOPMENT

Simple and Multiple Linear Regression - Model Evaluation Using Visualization - Polynomial Regression and Pipelines - R-squared and MSE for In-Sample Evaluation - Prediction and Decision Making

MODEL EVALUATION

Model Evaluation - Over-fitting, Under-fitting and Model Selection - Ridge Regression - Grid Search Model Refinement

REFERENCES

1. McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. " O'Reilly Media, Inc.".

2. Swaroop, C. H. (2003). A Byte of Python. Python Tutorial.

3. Jay L. Devore (2011). Probability and Statistics for Engineering and the Sciences. "Cengage Learning".

4. David W. Hosmer, Stanley Lemeshow (2000). Applied logistic regression (Wiley Series in probability and statistics). "Wiley-Interscience Publication".

5. Leonard Kaufman, Peter J. Rousseeuw (1990). Finding Groups in Data: An Introduction to Cluster Analysis. "John Wiley & Sons, Inc".

COUK	SE DESIGNERS			
S. No.	Name of the	Designation	Departme	Mail ID
	Faculty		nt	
1	Mrs.V.Subapriya	Assistant	CSE	Subapriya.cse@avit.ac.in
		Professor (G II)		
2	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmvkec.edu.i
				n

17CYEC	01		DIGI	TAL I	FORE	NSICS	}		(Categor	y L	Т	Р	Cı	redit
												0	0		3
PREAMBLE											•				
The course co															
of computer a															
countermeasu	res; me	thods a	nd star	ndards	for ext	raction	, prese	rvation	, and de	position	of legal	evider	ice in	a co	ourt of
law.															
PREREQUI			Securit	у											
COURSE OI	BJECT	IVES													
1. To un	derstan	d how t	o do th	ne digit	al fore	nsics in	nvestig	ation.							
2. To ap	ply app	ropriate	e skills	and kr	lowled	ge in s	olving	various	s compu	iter forei	nsics pro	blems			
	ply kno														
4. To ap	ply kno	wledge	in solv	ving fo	rensic	proble	ms rela	ted wit	th route	rs, netwo	orks and	E-mai	ls.		
	rn ema		sics an	d stega	nograj	ohy									
COURSE O															
On the succes	sful con	mpletio	n of th	e cours	se, stud	lents w	ill be a	ble to			1				
CO1: Able to	unders	tand ba	sics in	digital	forens	sics					Underst	and			
CO2: Able to	o unders	stand a	nd app	ly digit	al fore	nsics i	n inves	tigation	n		Underst	and an	d App	oly	
CO3: Able to	unders	tand an	d appl	y data :	forensi	cs					Underst	and an	d App	oly	
CO4: Able to	unders	tand an	d appl	y netwo	ork for	ensics					Understand and Apply				
CO5: Ab	le to un	derstan	d and a	apply e	mail fo	orensic	s & Ste	eganog	raphy		Underst	and an	d App	oly	
MAPPING V	VITH H	PROGI	RAMN	IE OU	TCON	MES A	ND PI	ROGR	AMME	E SPECI	FIC OU	TCO	MES		
COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC)2	PSO3
CO1 S	Μ	М	М	-	М	-	S	-	-	-	-	S	N	[Μ
CO2 S	Μ	S	Μ	М	М	-	S	-	-	-	-	Μ	N	[Μ
CO3 M	Μ	S	М	М	М	I	S	-	-	-	-	Μ	N	[Μ
CO4 S	Μ	Μ	М		М	I	S	-	-	-	-	Μ	N	[S
CO5 S	Μ	Μ	Μ	S	М	-	S	-	-	-	-	Μ	N	[S
S- Strong; M-	Mediur	n; L-Lo)W												

UNIT I - INTRODUCTION	8 Hours
History of Forensics - Computer Forensic Flaws and Risks - Rules of Computer Forensic	cs – Legal
issues – Digital Forensic Principles – Digital Environments – Digital Forensic Methodolo	ogies.
UNIT II - DEGITAL FORENSIC INVESTIGATION	9 Hours
Live forensics and investigation –Digital evidence – Seizure methodology- Factors limiti	ng the whole
sale seizure of hardware- Demystifying computer /cyber crime – explosion of networking	g – explosion
of wireless networks – Interpersonal communication.	
UNIT III - DATA FORENSIC	8 Hours
Recovering deleted files and deleted partitions - deleted file recovery tools - deleted part	itioned
recovery tools – data acquisition and duplication – data acquisition tools – hardware tools	s – backing up
and duplicating data.	
UNIT IV - NETWORK FORENSIC	10 Hours
An overview of Routers – Hacking Routers – Investigating Routers – Investigating Wirel	ess Attacks –
Basics of wireless – Wireless Penetration Testing – Direct Connections to Wireless Acce	ss Point –
Wireless Connect to a Wireless Access Point.	
UNIT V - EMAIL FORENSIC & STEGANOGRAPHY	10 Hours
E-Mail Terminology - Forensics Acquisition – Processing Local mail archives – Processi	ng server level
archives – classification of steganography – categories of steganography in Forensics – A	pplication of
steganography -Types of password cracking	
TEXT BOOKS	

1. John Sammons, "The Basics of Digital Forensics", Elsevier 2015

2. Linda Volonins, Reynalds Anzaldua, "Computer Forensics for dummies", Wiley Publishing Inc., 2008.

3. Anthony Reyes, Jack Wiles, "Cybercrime and Digital Forenscis", Syngress Publishers, Elsevier 2007.

REFERENCES

1. Thomas J Holt, Adam M Bossler and Kathryn C, "Cybercrime and Digital Forensics: An Introduction" 1st Edition, Routledge Publisher, 2015.

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

170	7CYEC02 CYBER CRIMES AND LAWS Categ									Categor	y L	Т	Р	Credit	
												3	0	0	3
	MBLE														
	-			nowled	lge abo	out cybe	er crim	es and	laws. S	tudents	will stud	ly about o	cyber la	aws fo	r various
types of															
	EQUI														
COUI	RSE O	BJEC	FIVES												
1.	To pro	vide in	troduc	tion to	cyberc	rimes a	and typ	bes							
2.	To pro	vide in	troduc	tion to	cyber o	crimes	and di	gital ev	vidence	s					
3.	To stuc	dy cybe	er laws												
4.	To stuc	dy abou	ut copy	rights	in digi	tal me	dium								
5.	To stuc	dy cybe	er laws	in e-co	ommer	ce									
	RSE O														
On the	succes	ssful co	ompleti	ion of t	he cou	rse, stu	dents v	will be	able to)		-			
CO1: A	Able to	unders	tand ty	pes of	cyber o	crimes						Understa	and		
CO2: A			stand v	arious	types o	of cybe	rcrime	s and a	pply di	igital ev	idence	Understa	and and	d App	ly
CO3: A	Able to	unders	tand ar	nd appl	y cybe	r laws	against	t cyber	crimes	5		Understa	and and	l App	ly
CO4 : A	ble to	unders	tand c	opy rig	hts in o	digital	mediu	m				Understa	and		
CO5:	Able to	unders	stand a	nd app	ly cybe	er laws	in e-co	ommer	ce			Understa	and and	l App	ly
MAPI	PING V	NITH	PROG	GRAM	ME O	UTCO	MES .	AND I	PROG	RAMM	E SPEC	IFIC O			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	I PSO	2 PSO3
CO1	Μ	Μ	Μ	Μ	-	S	-	S	-	-	-	-	S	M	М
CO2	Μ	Μ	S	Μ	Μ	S	-	S	-	-	-	-	Μ	M	М
CO3	Μ	М	S	Μ	Μ	S	-	S	-	-	-	-	Μ	Μ	М
CO4	S	Μ	Μ	Μ		S	-	S	-	-	-	-	Μ	M	S
CO5	S	М	Μ	Μ	S	S	-	S	-	-	-	-	Μ	M	S
S- Stro	ong; M-	Mediu	ım; L-I	LOW										•	
	<u> </u>														

UNIT I - INTRODUCTION

History of computer networking and the Internet. Network edge - Protocol layers and their service models - Networks attacks – types of cybercrimes, case studies in cyber crime

UNIT II - CYBER CRIME AND DEGITAL EVIDANCE

Computer system security- History-Standards, International security activity access controls-user access management –types of access control-Information security-threats-structure-policies- Tools - Information processing-Introduction to wireless network security.

UNIT III - CYBER LAW

Scope of Cyber Law, Introduction to Indian Cyber Law, General Laws and Procedures in India-Cyber Law and Internet- Understanding of internet-Cyber Jurisprudence-Analytical and Ethical Jurisprudence-Conflicts of Law-Case Study: International Conventions on Cyber Law.

UNIT IV - COPY RIGHTS IN DIGITAL MEDIUM

Organization security-asset classification and control-physical and environment security-personnel security-Human Rights- Cyber Stalking, Privacy Invasion by Government, E-Government and E-governance-Legal Issues in E-Governance Intellectual Property Issues and Cyberspace - The Indian Perspective.

UNIT V - CYBER LAWS FOR E-COMMERCE

e-Commerce in India-Overview of e-Commerce- Growth and Potential of Ecommerce in India- Bottlenecks of e-Commerce-Regulatory and Legal Environment of E-Commerce- e-Banking-Tele-Banking Service-Challenges of Development of e-Banking- Electronic Contracts- Digital Signatures- legal and technical issues.

TEXT BOOKS

- 1. Kenneth J. Knapp, "Cyber Security and Global Information Assurance: Threat Analysis and Response Solutions", IGI Global, 2009.
- 2. Debby Russell and Sr. G.T Gangemi, "Computer Security Basics (Paperback)", 2nd Edition, O' Reilly Media, 2006.
- 3. Thomas R. Peltier, "Information Security policies and procedures: A Practitioner's Reference", 2nd Edition Prentice Hall, 2004.
- 4. Jonathan Rosenoer, "Cyber law: the Law of the Internet", Springer-verlag, 1997.
- 5. Thomas R Peltier, Justin Peltier and John blackley, "Information Security Fundamentals", 2nd Edition, Prentice Hall, 1996.

REFERENCES

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

9 Hours

9 Hours

8 Hours

10 Hours

9 Hours

- 1. Law Relating to COMPUTERS, Internet and E-Commerce A Guide to CYBER LAWS & the IT Act, with Rules, Regulations, Notifications & Case Law By NandanKamath (Ed.), Foreword by N.R.MadhavaMenon.
- 2. Electronic Banking: The Ultimate Guide to Online Banking Hardcover by SCN Education B.V.
- 3. Law Relating to COMPUTERS, Internet and E-Commerce A Guide to CYBER LAWS & the IT Act, with Rules, Regulations, Notifications & Case Law By NandanKamath (Ed.), Foreword by N.R.MadhavaMenon.
- 4. Information Technology Law and practices by Vakulsharma,
- 5. Computers, Internet and New Technology Laws (A comprehensive reference work with a special focus on developments in India)" By: Karnika Seth,
- 6. Cyber Law & Crimes By: BarkhaBhasin, Rama Mohan Ukkalam,

17CYEC03	INTRUSION DETECTION AND PREVENTION SYSTEM	Categor y	L	Т	Р	Credit
			3	0	0	3

PREAMBLE

This course provides knowledge on intrusion detection and prevention system. Students learn about the different types of intrusions and tools used for detection and prevention of intrusions. **PREREQUISITE:** Network Security and management

COUR	SE OI	BJECT	FIVES	5											
1	To u	ndersta	and the	conce	pts of	intrusi	on det	tection	and p	reventio	on syste	em			
2	To study intrusion detection system models														
3	To study about anomaly detection														
4	To develop secure intrusion detection system														
5	To study recent trends in intrusion detection and prevention systems														
COUR	JRSE OUTCOMES														
On the															
	On the successful completion of the course, students will be able to														
CO1:	: Understand intrusion detection and prevention systems Understand														
CO2:	Develo	op and	apply	intrusi	on det	ection	and p	reventi	on sys	tems m	odels	Unders	stand ar	nd apply	/
CO3:	Detect	anoma	aly's									Unders	stand ar	nd apply	/
CO4:	Apply	securit	ty cond	cepts in	n intru	sion de	etectio	on and	preven	tion sys	stem	Unders	stand ar	nd apply	/
CO5:	Apply	IDPS	tools									Apply			
MAPP	ING V	VITH	PROC	GRAM	IME (OUTC	OME	S ANE) PRO	GRAM	IME S	PECIF	IC OU	ГСОМ	ES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO2	PSO
											1				3
C01	S	Μ	-	-	-	-	S	-	-	-	М	М	М	S	М
CO2	Μ	Μ	S	Μ	-	-	-	-	-	-	L	Μ	S	-	-
CO3	M M M M - M - L L - S M S														
CO4	Μ	S	Μ	-	-	Μ	-	- T	-	Μ	-	M	-	Μ	-
CO5	O5 M M S M - L - M M M Strong; M-Medium; L-Low														
S- Stro	ng; M-	Mediu	ım; L-I	LOW											

UNIT I - INTRODUCTION

Intruder types, intrusion methods, processes and detection, message integrity and authentication, honeypots, firewalls.

UNIT II - INTRUSION DETECTION SYSTEM (IDS)

General IDS model, data mining based IDS, Denning model, data mining framework for constructing features and models for intrusion detection systems

UNIT III - ANOMALY DETECTION

Unsupervised anomaly detection, Host-based anomaly detection, taxonomy of security flaws in software, self-modeling system calls for intrusion detection with dynamic window size.

UNIT IV - SECURE INTRUSION DETECTION SYSTEM

Secure intrusion detection systems, network security, secure intrusion detection environment, secure policy manager, and secure IDS sensor, alarm management, intrusion detection system signatures, sensor configuration, signature and intrusion detection configuration, IP blocking configuration, intrusion detection system architecture.

UNIT V - RECENT TRENDS

Zero day attacks, artificial Intelligence in IDPS, tools for IDPS, Case studies

TEXT BOOKS

- 3. Al-Sakib Khan Patha, The State of the Art in Intrusion Prevention and Detection, CRC press, 2016.
- 4. Endorf, C., Schultz E. and Mellander J., "Intrusion Detection and Prevention," McGraw-Hill, 2003.

REFERENCES

- 2. Rash, M., Orebaugh, A. and Clark, G., "Intrusion Prevention and Active Response: Deploying Network and Host IPS", Syngress. 2005.
- 3. Cooper, M., Northcutt, S., Fearnow, M. and Frederick, K., "Intrusion Signatures and Analysis", Sams. 2001

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

8 Hours

9 Hours

9 Hours

9 Hours

5 111

10 Hours

17CYI	E C04		PE	NETF	RATIC	DN TE	STIN	G		Ca	tegory	L	Т	P C	Credit
												3	0	0	3
penetra	urse pr tion te	ovides sting			•	on the j	penetra	ation to	esting.	Studen	ts will	learn ab	out the	e tools u	ised for
PRERI	EQUIS	SITE:	Ethica	al Hac	king										
COUR	SE OI	BJEC	FIVES	}											
1	To u	ndersta	ind per	netratio	on testi	ing an	d its ty	pes							
2	To understand penetration testing and its types To study metasploit techniques														
3	To understand and apply meterpreter techniques														
4	To u	ndersta	and and	apply	/ crede	ntial h	arvest	ing tec	hnique	es					
5	To apply tools for penetration testing														
COUR	SE OI	U TCO	MES												
On the	succes	sful co	omplet	ion of	the co	urse, s	tudent	s will l	be able	e to					
CO1: .	Able to	o unde	rstand	penetr	ation t	echnic	lues					Unders	stand		
CO2: ⁷	To unc	lerstan	d and	develo	p appl	icatior	ns for r	netasp	loit			Unders	stand a	nd appl	у
CO3: ⁷	To unc	lerstan	d and	develo	p appl	icatior	ns for r	neterp	reter			Unders	stand a	nd appl	у
CO4:	To unc	lerstan	d and	develo	p appl	icatior	ns for c	redent	tial har	vesting		Unders	stand a	nd appl	у
CO5: .	Able to	o setup	penet	ration	testing	, envir	onmen	ıt.				Apply			
												PECIF	1		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO1	PSO2	PSO 3
CO1	S	М	-	-	-	-	S	-	_	_	M	М	М	S	M
CO2	M	M	S	M	_	-	-	_	-	-	L	M	S	-	-
CO3	M	M	M	M	-	М	_	L	-	-	L	-	S	М	S
CO4	Μ	S	М	-	-	Μ	-	_	-	М	-	М	-	М	-
CO5	Μ	М	-	-	S	М	-	L	-	-	М	М	-	-	М
S- Strop	ng; M-	Mediu	ım; L-l	Low											

UNIT I - INTRODUCTION

Basics of Penetration Testing, Types of Penetration Testing, Intelligence Gathering, Thread Modeling, Vulnerability Analysis, Vulnerability Scanners

UNIT II – METASPLOIT

Metasploit Overview, Meta Sploit Interfaces, Utilities,

UNIT III – METERPRETER

Scanning with NMAP, Attack MS SQL, Basic Meterpeter Commands, Dumping Username and Password, Meterpreter Scripting

UNIT IV - CREDENTIAL HARVESTING

Credential Harvesting overview, Configuration, Launching the attack, , Building Your Own Module **UNIT V - SIMULATED PENETRATION TESTING** 9 Hours

Post Exploitation, Attacking Apache Tomcat, Attacking Obscure Services, Configuring your Own Target Machine

TEXT BOOKS

1. David Kennedy, Jim O'Gorman, Devon Kearns, and Mati Aharoni, "Metasploit the Penetration Tester's Guide", No Starch Press, 2011, ISBN is 9781593272883.

REFERENCES

1. Lee Allen, Tedi Heriyanto, Shakeel Ali, "Kali Linux - Assuring Security by Penetration Testing", Packt Publishing, 2014, ISBN is 978-1-84951-948-9

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

8 Hours

10 Hours

10 Hours

8 Hours

	7CYEC05 MOBILE COMMUNICATION C SECURITY Y										Categor	L	Т	Р	Credit
												3	0	0	3
	MBLE		1	• 1	1 1		•,	•	•	1 •1		• ,•	C (1		
										obile contraction		ications	s. Stud	ents v	vill stud
	EQUIS								ommu	meation					
COUR	SE OF	BJEC	FIVES	5											
1	To ur	ndersta	and sec	urity i	ssues i	n mob	ile pho	one							
2	To stu	udy se	curity	in mot	oile co	mmun	icatior	ns							
3	To un	ndersta	and and	i apply	v prote	ction to	echniq	ues in	mobil	e comm	nunicati	on			
4	To understand and apply protection techniques in mobile communication To understand and apply network based security services														
5	To stu	udy pr	otectio	on tech	niques	s in mo	bile tr	ansact	ions						
COUR	SE OU	JTCO	MES												
									11						
	SE OU			ion of	the cou	urse, st	udent	s will l	be able	e to					
On the		sful co	omplet				udent	s will l	be able	e to		Unders	stand		
On the CO1:	succes	sful co o unde:	omplet	mobile	e secur	rity						Unders		nd ap	ply
On the CO1: <i>C</i> O2: <i>C</i> O3: <i>CO3: CO3: CO3:</i>	success Able to	sful co o unde: lerstan	omplet rstand d and	mobile apply s	e secur	rity y in me	obile c	commu	inicatio				stand a	-	
On the CO1: 7 CO2: 7 CO3: 7 commu	success Able to To und To und	sful co o unde: lerstan lerstan on	omplet rstand d and d and	mobile apply s apply p	e secur securit	tity y in ma ion tec	obile c chniqu	commu	inicatio			Unders	stand a	-	
On the CO1: 7 CO2: 7 CO3: 7 CO3: 7 CO4: 7	success Able to To und To und unicatio	sful co o unde: lerstan lerstan on ly netv	omplet rstand d and d and work b	mobile apply s apply p ased se	e secur securit protect ecurity	rity y in ma ion tec y servic	obile c chniqu ces	commu es in n	inication nobile			Unders Unders	stand a	-	
On the CO1: 7 CO2: 7 CO3: 7 comm CO4: 7 CO5: 7	success Able to To und To und unicatio To app To app	sful co o unde lerstan lerstan on ly netv ly pro	omplet rstand d and d and work b tection	mobile apply s apply p ased se techni	e securit securit protect ecurity iques f	ity y in mo ion tec y servic for mol	obile c chniqu ces bile tra	commu es in n ansacti	inication nobile ons	ons	IME SI	Unders Unders apply	atand a	nd ap	ply
On the CO1: 7 CO2: 7 CO3: 7 commu CO4: 7 CO5: 7 MAPP	success Able to To und To und unicatio To app To app	sful co o unde lerstan lerstan on ly netv ly pro VITH	omplet rstand d and d and work b tection PROC	mobile apply s apply p ased so technic GRAM	e securit securit protect ecurity iques f	ity y in ma ion tec servic for mol	obile c chniqu ces bile tra OMES	commu es in n ansacti S ANE	unication nobile ons	ons		Unders Unders apply Apply PECIF	itand a itand a	nd ap	ply MES
On the CO1: 7 CO2: 7 CO3: 7 commu CO4: 7 CO5: 7 MAPP	success Able to To und Unicatio To app To app	sful co o unde lerstan lerstan on ly netv ly pro VITH	omplet rstand d and d and work b tection PROC	mobile apply s apply p ased so technic GRAM	e securit securit protect ecurity iques f	ity y in ma ion tec servic for mol	obile c chniqu ces bile tra OMES	commu es in n ansacti S ANE	unication nobile ons	ons		Unders Unders apply Apply PECIF	itand a itand a	nd ap	ply MES
On the CO1: 7 CO2: 7 CO3: 7 CO3: 7 CO4: 7 CO5: 7 VIAPP COs CO1	success Able to To und Unicatio To app To app	sful co o unde lerstan lerstan on ly netv ly pro VITH	omplet rstand d and d and work b tection PROC	mobile apply s apply p ased so technic GRAM	e securit securit protect ecurity iques f	ity y in ma ion tec servic for mol	obile c chniqu ces bile tra OMES	commu es in n ansacti S ANE	unication nobile ons	ons	РО1 1 М	Unders apply Apply PECIFI PO12 M	itand a stand a IC OU PSO1 M	nd ap	ply MES 2 PSO
On the CO1: CO2: CO3: CO3: CO4: CO5: VAPP COs CO1 CO2	success Able to To und Unication To app To app ING V PO1	sful co o unde lerstan lerstan ly netv ly pro VITH PO2 M M	omplet rstand d and d and work b tection PROC	mobile apply s apply p ased so technic GRAM	e securit securit protect ecurity iques f	ity y in ma ion tec servic for mol	obile c chniqu ces bile tra OMES PO7	commu es in n ansacti S ANE PO8	unication nobile ons D PRO PO9	ons	PO1 1 M L	Unders Unders apply Apply PECIF PO12	itand a stand a IC OU PSO1 M S	nd ap TCO PSC S -	PMES 2 PSO 3 M
On the CO1: CO2: CO3: CO3: CO3: CO4: CO5: MAPP COs CO1 CO2 CO3	success Able to To und Unication To app To app ING V PO1 S M M	sful co o unde lerstan lerstan ly netv ly pro VITH PO2 <u>M</u> <u>M</u>	omplet: rstand d and a d and a work b tection PROC PO3 - S M	mobile apply s apply p ased se techn GRAM PO4	e securit securit protect ecurity iques f	ity y in ma ion tec y servic for mol DUTC PO6 - - M	obile c chniqu ces bile tra OMES PO7	commu es in n ansacti S ANE PO8	unication nobile ons D PRO PO9	ons GRAM PO10 - - - -	РО1 1 М	Unders Unders apply Apply PECIF PO12 M M -	itand a stand a IC OU PSO1 M	nd ap TCO PSC S - M	ply MES 2 PSC 3 M - S
On the CO1: CO2: CO3: CO3: CO4: CO5: VAPP COs CO1 CO2	success Able to To und Unication To app To app ING V PO1 S M M	sful co o unde lerstan lerstan ly netv ly pro VITH PO2 M M	omplet: rstand d and a d and a work b tection PROC PO3 - S	mobile apply s apply p ased so techni GRAM PO4 - M	e securit securit protect ecurity iques f IME O PO5	ity y in ma ion tec v servic for mol DUTC PO6	obile c chniqu ces bile tra OMES PO7 S -	commu es in n ansacti S ANE PO8 - -	ons PPRO - -	ons	PO1 1 M L	Unders apply Apply PECIFI PO12 M	itand a stand a IC OU PSO1 M S	nd ap TCO PSC S -	PMES PMES PSO 3 M - S

10 Hours Threats, Hacking, and Viruses in Mobile Communications. Access Control and Authentication in **UNIT III - ATTACKS AND PROTECTION TECHNIQUES IN MOBILE COMMUNICATION** 8 Hours Security of GSM Networks. Security of 3G Networks. Wireless Local Area Network Security. Security of Ad Hoc Networks. SECURITY OF NETWORK-BASED SERVICES IN **MOBILE COMMUNICATION** 9 Hours Inter-System Roaming and Internetworking Security. Securing Mobile Services. Security of Mobile Sensor Networks. Security of Satellite Services. **PROTECTION TECHNIQUES FOR MOBILE APPLICATIONS** 8 Hours

Security of Mobile Payments. Security of Mobile Voice Communications. Security of Multimedia Communications

TEXT BOOKS

- 1. Nourreddine Boudriga, Security of Mobile Communications, Aurerbach Publications, CRC Press. 2019.
- 2. Noureddine Boudriga, "Security of Mobile Communications", CRC Press, 2009.

REFERENCES

1. Himanshu Dwivedi, Chris Clark and David Thiel, "Mobile Application Security", McGraw-Hill, 1st Edition, 2010.

COURSE DESIGNERS

Name of the Faculty	Designation	Department	Mail ID
Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in

UNIT I - INTRODUCTION

Introduction to Mobile Security - Security of GSM Networks - Security of UMTS Networks LTE Security - Vulnerabilities in Cellular Services - WiFi and Bluetooth Security - SIM/UICC Security -Security of Mobile VoIP Communications.

UNIT II - MOBILE COMMUNICATION AND SECURITY

Mobile Communications. Common Techniques for Mobile Communications Security. Smart Card Security: The SIM/USIM Case.

10 Hours

170	CYECO	6	BIG DATA SECURITY Cat								Category	L	Т	Р	Credit
											EC(PS)	3	0	0	3
In this c and concept comput and org	PREAMBLE In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment, discuss generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, accessing R packages, writing R functions, debugging, and organizing and commenting R code. Topics in statistical data analysis and optimization will provide working example. PREREQUISITE														anguage atistical ugging,
	G DATA ANALYTICS														
COUR	DURSE OBJECTIVES														
1	To understand the mathematical foundations of security principles														
2	To appreciate the different aspects of encryption techniques														
3	To understand the role played by authentication in security														
4															
COUR	SE OU	тсом	IES												
On the	success	ful com	pletion	of the	course,	student	ts will b	e able t	.0						
СО1: Т	'o under	stand t	he math	nematica	al found	lations	of secu	rity prir	nciples			Understa	and		
СО2: Т	'o appre	ciate th	e differ	ent asp	ects of	encrypt	ion tecl	nniques				Understa	and		
СО3:То	o unders	stand th	e role p	blayed b	y authe	enticatio	on in se	curity				Understa	and		
СО4: Т	04: To understand the security concerns of big-data Understand														
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPI	ECIFIC (DUTCON	1ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO3	S	М	L	-	М	I	I	-	-	-	-	М	S	М	М
CO4	S	М	L	-	М	-	-	-	-	-	-	Μ	S	М	М
S- Strop	ng; M-N	Aedium	n; L-Lov	W											

SYLLABUS SYMMETRIC TECHNIQUES

Probability and Information Theory - Algebraic foundations – Number theory - Substitution Ciphers – Transposition Ciphers – Classical Ciphers – DES – AES – Confidentiality Modes of Operation

ASYMMETRIC TECHNIQUES

Diffie-Hellman Key Exchange protocol – Discrete logarithm problem – RSA cryptosystems & cryptanalysis – ElGamal cryptosystem – Elliptic curve architecture and cryptography - Data Integrity techniques.

AUTHENTICATION

Authentication requirements – Authentication functions – Message authentication codes – Hash functions – Security of hash functions and MACS – MD5 Message Digest algorithm – Secure hash algorithm.

SECURITY ANALYTICS I

Introduction to Security Analytics – Techniques in Analytics – Analysis in everyday life – Challenges in Intrusion and Incident Identification – Analysis of Log file – Simulation and Security Process.

SECURITY ANALYTICS II

Access Analytics - Security Analysis with Text Mining - Security Intelligence - Security Breaches

REFERENCESBOOKS:

1. William Stallings, "Crpyptography and Network security: Principles and Practices",

Pearson/PHI, 5th Edition, 2010.

2. Behrouz A. Forouzan, "Cryptography and Network Security", Tata McGraw Hill Education, 2nd Edition, 2010.

3. Douglas R. Stinson , "Cryptography Theory and Practice ", Chapman & Hall/CRC, 3rd Edition, 2006.

4. Mark Talabis, Robert McPherson, I Miyamoto and Jason Martin, "Information Security Analytics: Finding Security Insights, Patterns, and Anomalies in Big Data", Syngress Media, U.S., 2014.

S. No.	Name of the Faculty	Designation	Departme nt	Mail ID
1	Mrs.V.Subapriya	Assistant Professor	CSE	Subapriya.cse@avit.ac.in
2	T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

17CYEC07	CLOUD COMPUTING SECURITY	Category	L	Т	Р	Credit
		EC(PS)	3	0	0	3

PREAMBLE

This course cloud computing security introduces the basic concepts of security in cloud services and crypto systems in cloud services, which are widely used in the design of cloud computing security. The security issues in virtualization system, virtualization technology, virtualization attacks and legal issues are also considered with in this course.

	PREREQUISITE														
	CLOUD COMPUTING,,CYBER SECURITY COURSE OBJECTIVES														
COUR	SE OB	JECH	VES												
1	To understand cloud computing security concepts														
2	To study various cloud services														
3	To apply cloud computing in collaboration with other services														
4	To understand the cloud computing services														
5	To apply cloud computing online														
COUR	URSE OUTCOMES														
On the															
	On the successful completion of the course, students will be able to														
CO1: U	1: Understand basic service concepts of cloud computing Understand														
CO2: U	Jndersta	and and	apply s	ecurity	issues i	in cloud	l compu	ıting				Analyze			
CO3: A	Apply vi	rtualiza	tion tec	hnique	S							Apply			
CO4: U	Jndersta	and and	apply t	he attac	ks conc	cepts in	virtual	ization				Apply			
CO5: U	Jndersta	and and	apply l	egal iss	ues in c	loud se	rvices					Apply			
MAPP	ING W	ITH P	ROGR	AMMI	EOUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	М	L	-	М	_	_	М	_	_	_	М	S	М	М
CO2	S	М	L	-	М	-	-	Μ	-	-	-	M	S	M	M
CO3	S	М	L	-	М	-	-	М	-	-	-	М	S	М	М
CO4															
CO5	D5 S M L - M M M S M M														
S- Stro	S- Strong; M-Medium; L-Low														

Security in Cloud Services (PaaS, IaaS and SaaS). Authentication in cloud services, open SSL, key management and crypto systems in cloud services: stream ciphers, block ciphers, modes of operation, hashing, digital signatures. **SECURITY ISSSUES**

Security Issues in Virtualization System: ESX and ESXi Security, ESX file system security, storage considerations, backup and recovery. Vulnerabilities in virtual machine, hypervisor vulnerabilities, hypervisor escape vulnerabilities, configuration issues, malware (botnets etc).

VIRTUALIZATION TECHNOLOGY

IBM security virtual server protection, virtualization-based sandboxing; Storage Security- HIDPS, log management, Data Loss Prevention. Location of the Perimeter.

VIRTUALIZATION ATTACKS

Guest hopping, attacks on VM (attack on control of VM, code injection into virtualized file structure), VM migration attack, hyperjacking.

LEGAL ISSUES

Responsibility, ownership of data, right to penetration test, local law where data is held, examination of modern Security Standards (eg PCIDSS), how standards deal with cloud services and virtualization, compliance for the cloud provider vs. compliance for the customer

TEXT BOOKS

1. TimMather, Subra Kumaraswamy, Shahed Latif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance" O'Reilly Media; 1 edition [ISBN: 0596802765],2009.

2. Ronald L. Krutz, Russell Dean Vines, "Cloud Security" [ISBN: 0470589876],2010.

REFERENCES

1. John Rittinghouse, James Ransome, "Cloud Computing" CRC Press; 1 edition [ISBN: 1439806802], 2009.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	Dr. S. Senthilkumar	Assistant Professor	CSE	senthilkumars@vmkvec.edu.in

170	CYEC	8	DA	ΓA VIS	SUALIZ	ZATIO	N TEC	CHNIQ	UES	Ca	ategory	L	Т	Р	С	redit
										E	C(PS)	3	0	2		4
PREA	MBLE															
		ion is i	ncreasir	ngly im	oortant	in this e	era whe	re the u	se of da	ata is gro	wing in	many dif	ferent	fields.	. Dat	a
visualiza	ation tec	chnique	es allow	people	to use t	their pe	rception	n to bet	ter unde	erstand th	nis data.	The goal	of this	cours	se is	to
introduc	e stude	nts to d	ata visu	alizatio	n inclu	ding bo	th the p	rinciple	es and te	echnique	s. Stude	nts will le	earn th	e valu	e of	
						•	-	-		-		ind how u				o best
leverage	-		-													
-	EQUIS															
	A WARI		SING A	ND DA	TA MI	NING										
COUR	RSE OB	JECT	IVES													
1	To understand how accurately represent voluminous complex data set in web and fromother data sources															
2	To understand the methodologies used to visualize large data sets															
3	To understand the process involved in data visualization and security aspects involved in															
		isualiza	•													
COUR	RSE OU															
On the	success	ful con	npletion	of the	course,	studen	ts will t	be able	to							
COl	Underst	and ho	w accur	otoly ro	nrasant	volumi		ompley	data sa	t in web	and	Underst	and			
fromoth				atery re	present	voluim		Jupier	uata se		anu	Underst	anu			
CO2:				lologia	used t		liza laro	na data i	eate			Understa	nd			
				-				-				TT T	1			
CO3:	Uunder: ed in da	stand th	ne proce	ss invo	lved in	data vis	sualizat	ion and	securit	y aspects	8	Understa	Ind			
					EOUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC	OUTCO	MES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSC	02	PSO3
0.01													~			17
CO1	S	M	L	-	M	-	-	M	-	-	-	M	S		Л	M
CO2	S	M	L	-	M	-	-	M	-	-	-	M	S		Л	M
CO3	S	M	L	-	Μ	-	-	Μ	-	-	-	Μ	S	N	Л	Μ
S- Stro	ng; M-l	Mediun	n; L-Lo	W												

Context of data visualization – Definition, Methodology, Visualization design objectives. KeyFactors – Purpose, visualization function and tone, visualization design options – Datarepresentation, Data Presentation, Seven stages of data visualization, widgets, data visualizationtools.

VISUALIZING DATA METHODS

Mapping - Time series - Connections and correlations - Scatterplot maps - Trees, Hierarchies and Recursion - Networks and Graphs, Info graphics

VISUALIZING DATA PROCESS

Acquiring data, - Where to Find Data, Tools for Acquiring Data from the Internet, Locating Files forUse with Processing, Loading Text Data, Dealing with Files and Folders, Listing Files in a Folder, Asynchronous Image Downloads, Advanced Web Techniques, Using a Database, Dealing with aLarge Number of Files. Parsing data -Levels of Effort, Tools for Gathering Clues, Text Is Best, Text Markup Languages, Regular Expressions (regexps), Grammars and BNF Notation, Compressed Data, Vectors and Geometry, Binary Data Formats, Advanced Detective Work.

INTERACTIVE DATA VISUALIZATION

Drawing with data – Scales – Axes – Updates, Transition and Motion – Interactivity - Layouts –Geomapping – Exporting, Framework – T3, .js, tablo.

SECURITY DATA VISUALIZATION

Port scan visualization - Vulnerability assessment and exploitation - Firewall log visualization -Intrusion detection log visualization -Attacking and defending visualization systems - Creatingsecurity visualization system.

REFERENCES

1. Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2013.

2. Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.

3. Greg Conti, "Security Data Visualization: Graphical Techniques for Network Analysis", No Starch Press Inc, 2007

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	Dr. S. Senthilkumar	Assistant Professor	CSE	senthilkumars@vmkvec.edu.in

170	CYEC0	9	DAT	TA CEN	NTRE	VIRTU	JALIZA	ATION		(Category	L	Т	P C	Credit
											EC	3	0	0	3
This co to virtu		ines wi	ill be co	overed i	n depth	in this					-	ng hyperv ter and h			
	EQUIS BASE N				TEN										
	RSE OB.			NI 513	IENI										
1	To lea	rn the c	concepts	s of We	b desig	n patte	rns and	page de	esign						
2	To understand and learn the scripting languages with design of web applications														
3	To learn the maintenance and evaluation of web design														
4	To learn about Resource monitoring and virtual machine data Protection														
	SE OU			of the	course.	studen	ts will b	be able t	0						
	Explain t											Underst	and		
	Apply en ces, Envi					nachine	es throu	gh softv	vare ma	anageme	nt	Apply			
	llustrate gration n			ion dep	loymen	it, modi	ficatior	n, mana	gement	; monito	ring	Apply			
CO4: <i>A</i>	Analyze	the util	ity in W	Vindow	s Vista	and late	er, displ	ays info	ormatio	n about 1	the use	Analyze	,		
	ware and Develop						machin	e data F	rotectio	on skills.		Analyze			
	•				0										
MAPH		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
MAPP COs	PO1			-	М	-	-	-	-	-	-	М	S	М	-
	PO1 S	М	L	-				1							
COs CO1 CO2	S S	M L	L L	-	M	-	-	-	-	-	-	М	S	М	М
COs CO1 CO2 CO3	S S S	L M	L L		M M	-	-	-	-	-	-	М	S	-	М
COs CO1 CO2	S S	L	L	-	М									-	

DATA CENTER CHALLENGES

How server, desktop, network Virtualization and cloud computing reduce data centre footprint, environmental impact and power requirements by driving server consolidation; Evolution of Data Centres: The evolution of computing infrastructures and architectures from standalone servers to rack optimized blade servers and unified computing systems (UCS).

ENTERPRISE-LEVEL VIRTUALIZATION

Provision, monitoring and management of a virtual datacenter and multiple enterprise-level virtual servers and virtual machines through software management interfaces; Networking and Storage in Enterprise Virtualized Environments - Connectivity to storage area and IP networks from within virtualized environments using industry standard protocols

VIRTUAL MACHINES & ACCESS CONTROL

Virtual machine deployment, modification, management; monitoring and migration methodologies.

RESOURCE MONITORING

Physical and virtual machine memory, CPU management and abstraction techniques using a hypervisor

VIRTUAL MACHINE DATA PROTECTION

Backup and recovery of virtual machines using data recovery techniques; Scalability - Scalability features within Enterprise virtualized environments using advanced management applications that enable clustering, distributed network switches for clustering, network and storage expansion; High Availability : Virtualization high availability and redundancy techniques.

TEXT BOOKS

1. Mickey Iqbal, "IT Virtualization Best Practices: A Lean, Green Virtualized Data Center Approach", MC Press [ISBN: 978-1583473542]2012.

2. Mike Laverick, "VMware vSphere 4 Implementation" Tata McGraw-Hill Osborne Media; 1 edition [ISBN: 978-0071664523],2012.

3. Jason W. McCarty, Scott Lowe, Matthew K. Johnson, "VMware vSphere 4 AdministrationInstant **REFERENCES**

1. BrianPerry, ChrisHuss, Jeantet Fields, "VCPVMwareCertifiedProfessionalonvSphere4 StudyGuide"Sybex; edition [ISBN: 978-0470569610], 2013.

2. Jason Kappel, Anthony Velte, Toby Velte, "Microsoft Virtualization with Hyper-V: Manage Your Datacenter with Hyper-V, Virtual PC, Virtual Server, and Application Virtualization" McGraw-Hill Osborne [ISBN: 978-007161

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	T.Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

17CYEC1(,	I	DISTR	BUTE	D CON	IPUTI	NG		(Category	L	Т	P (Credit
										EC(PS)	3	0	0	3
PREAMBLE The student will This course also system, synchror	includ	es the r	network	interne	et proto	col, ren		-	-		-		-	
PREREQUISI														
COMPUTER NETW		VES												
1 To layo	out fou	Indation	ns of di	stribute	d syster	ns								
2 To intr	To introduce the idea of network related issues													
3 To und	To understand in detail the remote method and objects and support required for distributed system													
4 To intr	To introduce the idea of middleware and computing of distributed systems													
5 To und	erstan	d the sy	ynchron	ization	and clo	oud com	puting	in distr	ibuted sy	stems				
COURSE OUT	COM	IES												
On the successf	ul con	pletior	n of the	course,	studen	ts will ł	be able	to						
CO1: Explain the distributed system		racteris	tics, mo	dels an	d desig	n issues	s related	l to				Unde	erstand	
CO2: Implement	t a dis	tribute	d file sy	stem fo	or a give	en Oper	ating S	ystem				Appl	у	
CO3: Develop I												Appl	у	
CO4: Construct given requ	iireme	ents.			-			-				Appl	у	
CO5: Analyze to prevention	on algo	orithms		-								Anal	yze	
MAPPING WI									-					1 -
	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1		PSO3
CO1 M CO2 S	- S	- S	- M	-	S M	-	M	-	-	-	- L	M S	M M	-
CO2 S CO3 S	S -	M	IVI	- M	M	-	L M	-	-	-	L	S S	S	S
CO4 S	S	S	M	-	S	-	-	-	-	-	M	S	-	S
CO5 S	S	M	M	-	S	S	S	-	-	-	-	M	S	-
S- Strong; M-M	edium	n; L-Lo	W								-			

Introduction – Examples of Distributed Systems–Trends in Distributed Systems – Focus on resource sharing – Challenges, DCS design goals: Transparencies, Fundamental issues, Case study: World Wide Web.

COMMUNICATION IN DISTRIBUTED SYSTEM

System Model – Inter process Communication - the API for internet protocols – External data representation and Multicast communication. Network virtualization: Overlay networks. Case study: MPI

REMOTE METHOD INVOCATION AND OBJECTS

Remote Invocation – Introduction - Request-reply protocols - Remote procedure call - Remote method invocation. Case study: Java RMI - Group communication - Publish-subscribe systems - Message queues - Shared memory approaches - Distributed objects - Case study: CORBA -from objects to components.

PEER TO PEER SERVICES AND FILE SYSTEM

Peer-to-peer Systems – Introduction - Napster and its legacy - Peer-to-peer – Middleware - Routing overlays. Overlay case studies: Pastry, Tapestry- Distributed File Systems : Data-Intensive Computing , Distributed Hash Tables , Consistency Models , Fault Tolerance , Many-Core Computing

SYNCHRONIZATION AND REPLICATION

Introduction - Clocks, events and process states - Synchronizing physical clocks - Logical time and logical clocks - Global states – Coordination and Agreement – Introduction - Distributed mutual exclusion – Elections – Transactions and Concurrency Control – Transactions -Nested transactions – Locks – Optimistic concurrency control - Timestamp ordering -Distributed deadlocks – Replication – Workflow Systems: Grid Computing, Cloud Computing , Virtualization , IaaS Clouds , File systems, Networked File systems, Parallel File systems.

TEXTBOOKS

1. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems Concepts and Design" Fifth edition – 2011-AddisonWesley.

REFERENCES

1. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.

2. Liu M.L., "Distributed Computing, Principles and Applications", Pearson and education, 2004.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Rajaprakash	Associate Professor	CSE	rajaprakash@avit.ac.in
2	Mrs.T.Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in

170	CYEC1	.1		AGILI	E MET	HODO	LOGI	ES			Category	L	Т	P (Credit
											EC(PS)	3	0	2	4
Softwa standar out, cro PRER		munica tarian g ITE	ted in t roups u	he Agil sing the	e Mani	festo. A	Arrange	ments a	dvance	throug	nd praction h coordir stance.				
	RSE OB														
1 7	To unde	rstand t	he back	kground	l and dr	iving fo	orces fo	r taking	g an Ag	ile appr	oach to so	oftware d	evelopr	nent	
	To obtain practical knowledge of agile development frameworks and be able to distinguish between agile and traditional project management methodologies.														
	To Examine various metrics for adopting agile software engineering														
4]	Describe how an unit tests is executed from beginning to end.														
5	Identify the approaches, tools and scenarios to introduce Agile to your organization effectively														
	To desig	-		uild too	ols, vers	sion cor	ntrol an	d contir	uous ir	ntegratio	on				
COUR	RSE OU	ТСОМ	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able	0						
CO1: I	dentify	the fund	lament	als of ag	gile and	scrum	framew	vork				Underst	and		
CO2: A	Apply de	esign pr	inciple	s and re	factorir	ng to ac	hieve A	gility.				Apply			
CO3: F	Reduce t	he risks	s in Tes	t driver	approa	ach in a	gile pro	ojects				Analyze	•		
CO4: I	mpleme	nt a rea	l softw	are proj	ect that	impler	nents a	gile exe	cution	techniqu	ues	Apply			
	Deploy a			adoptii	ng agile	metho	dology,	regard	less of t	he		Analyze	•		
•				AMMI	E OUT	COME	S AND	PROC	GRAM	ME SP	ECIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	-	-	-	М	S	М	М
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	М	Μ
CO3	S	М	L	-	М	-	-	-	-	-	-	М	S	Μ	М
CO4	S	М	L	-	М	-	-	-	-	-	-	М	S	Μ	Μ
CO5	S	М	L	-	М	-	-	-	-	-	-	М	S	Μ	Μ
S- Stro	ong; M-N	Medium	i; L-Lo	W											

FUNDAMENTALS OF AGILE

The Genesis of Agile- Introduction and background- Agile Manifesto and Principles- Overview of Scrum- Extreme Programming- Feature Driven development- Lean Software Development- Agile project management- Design and development practices in Agile projects- Test Driven Development- Continuous Integration- Refactoring- Pair Programming- Simple Design- User Stories- Agile Testing- Agile Tools.

AGILE SCRUM FRAMEWORK

Introduction to Scrum- Project phases- Agile Estimation- Planning game- Product backlog- Sprint backlog- Iteration planning- User story definition- Characteristics and content of user stories- Acceptance tests and Verifying stories- Project velocity- Burn down chart- Sprint planning and retrospective- Daily scrum- Scrum roles – Product Owner-Scrum Master- Scrum Team- Scrum case study- Tools for Agile project management.

AGILE TESTING

The Agile lifecycle and its impact on testing- Test-Driven Development (TDD)- xUnit framework and tools for TDD-Testing user stories - acceptance tests and scenarios- Planning and managing testing cycle- Exploratory testing- Risk based testing- Regression tests- Test Automation- Tools to support the Agile tester.

AGILE SOFTWARE DESIGN AND DEVELOPMENT

Agile design practices- Role of design Principles including Single Responsibility Principle- Open Closed Principle-Liskov Substitution Principle- Interface Segregation Principles- Dependency Inversion Principle in Agile Design- Need and significance of Refactoring- Refactoring Techniques- Continuous Integration- Automated build tools- Version control.

INDUSTRY TRENDS

Market scenario and adoption of Agile- Agile ALM- Roles in an Agile project- Agile applicability- Agile in Distributed teams- Business benefits- Challenges in Agile- Risks and Mitigation- Agile projects on Cloud- Balancing Agility with Discipline- Agile rapid development technologies

TEXT BOOKS

- 1. Ken Schawber, Mike Beedle, "Agile Software Development with Scrum", Pearson, 21 Mar2008.
- 2. Robert C. Martin, "Agile Software Development, Principles, Patterns and Practices", Prentice Hall, 25 Oct2002.
- Lisa Crispin, Janet Gregory, "Agile Testing: A Practical Guide for Testers and Agile Teams", AddisonWesley, 30 Dec 2008
- 4. www.it-ebooks.info/tag/agile
- 5. http://martinfowler.com/agile.html

REFÊRENCES

- 1. Alistair Cockburn, "Agile Software Development: The Cooperative Game", Addison Wesley, 19 Oct2006.
- 2. Mike Cohn Publisher, "User Stories Applied: For Agile Software", Addison Wesley, 1 Mar2004

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

170	CYEC1	2			BIO M	IETRI	CS				Category	L	Т	P (Credit
											EC(PS)	3	0	0	3
		biolog	gical inf	ormatic	on could	l be stor	red in d	ligital fo	orm to c	create bi	ometric re	esources	and ho	w the sa	me may
	EQUIS RMATI(CURIT	Y											
	SE OB.														
1	To uno	lerstan	d the co	oncepts	of Bior	netrics,	to enab	ole desig	gn of bi	ometric	system				
2	To understand the basics of Biometrics and its functionalities														
3	To get the exposure the context of Biometric Applications														
4	To learn to develop applications with biometric security														
COUR	SE OU	ТСОМ	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able t	0						
CO1: T	o learn	about t	he conc	epts of	biomet	ric mate	ching fo	or ident	ificatio	n		Understa	and		
CO2: T	To identi	fy algo	rithms	for fing	er biom	etric te	chnolog	gy				Understa	and		
CO3: A	Apply fac	cial bio	metrics	for ide	ntificat	ion						Apply			
CO4: A identifie	Analyze : cation.	iris bio	metric,	voice b	iometri	c, phys	iologica	al biom	etrics et	tc. for		Analyze	:		
CO5: T	To analyz	ze the u	use of e	thical is	sues							Analyze			
MAPP	PING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPI	ECIFIC (DUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	L	-	М	-	-	-	-	-	-	Μ	S	Μ	Μ
CO2	S	М	L	-	М	-	-	-	-	-	-	Μ	S	Μ	Μ
CO3	S	М	L	-	М	-	-	-	-	-	-	Μ	S	Μ	М
CO4	S	L	L	-	М	-	-	-	-	-	-	Μ	S	Μ	Μ
CO5	S	Μ	L	-	М	-	-	-	-	-	-	М	S	М	Μ
S- Stro	ng; M-N	/ledium	n; L-Lov	W											

The design cycle of biometric systems – Applications of Biometric systems – Security and priPerson Recognition – Biometric systems –Biometric functionalities: verification, identification – Biometric systems issues.

FINGERPRINT, FACIAL and IRIS RECOGNITION

FINGERPRINT: Friction ridge pattern- finger print acquisition: sensing techniques, image quality –Feature Extraction -matching -indexing. FACE RECOGNITION: Image acquisition: 2D sensors, 3D sensors- Face detection- Feature extraction -matching. Design of an IRIS recognition system-IRIS segmentation - normalization - encoding and matching- IRIS quality -performance evaluation.

BEHAVIORAL BIOMETRICS AND MULTIBIOMETRICS

Ear detection and - gait feature extraction and matching - hand geometry- soft biometrics - sources of multi-biometrics-Acquisition and processing - Fusion levels.

BIOMETRIC CRYPTOGRAPHY

Protection of biometric data –biometric data shuffling scheme- experimental results –security analysis - cryptographic key Reservation - cryptographic key with biometrics-Revocability in key generation system-Adaptations of Generalized key Regeneration scheme – IRIS Biometrics – Face Biometrics – Extension of Key Regeneration scheme.

ETHICAL USAGE

Public sector Implementation - Border Control - Responsibilities - Customer service - Government sector -Agriculture - Academic Research - Online Communications - Environmental situations - External pressure -Distractions – Implementations issues – Future Works

TEXT BOOKS

1. Anil K Jain and Arun A Roass Karthik Nandedkar, "Introduction to Biometrics", Springer, 2011.

2. David Check Ling Ngo, Andrew Beng Jin Teoh, Jiankun Hu "Biometric Security" Cambridge, 2015.

REFERENCES

1. LI, S. Z., AND JAIN, A. K., Eds. Handbook of Face Recognition. Springer, Heidelberg, Germany, 2011. 2. MALTONI, D., MAIO, D., JAIN, A. K., AND PRABHAKAR, S. Handbook of Fingerprint Recognition. Springer, 2009.

3. JAIN, L.C., HALICI, U., HAYASHI, I.; LEE, S.B., TSUTSUI, S. Intelligent Biometric Techniques in Fingerprint and Face Recognition. CRC Press, 1999.

COUR	COURSE DESIGNERS												
S. No.	Name of the Faculty	Designation	Department	Mail ID									
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in									
2	R.Bharanidharan	Assistant Professor	CSE	bharanidharan@vmkvec.edu.in									

COUDCE DECICNEDO

17CYF	EC13			OPEN	SOU	RCE SY	STEM	IS		(Category	L	Т	P C	Credit
											EC(PS)	3	0	0	3
PREAMB The purpose that technoor patent, or these goals	se of an ology to rademai	invest	t in it	withou	t having	g to eith	ner pay	monop	oly rent	t or fear l	itigation	on trade	secret,	copyright	nt,
PREREQUENIL	UISITE														
COURSE	OBJE	CTIVI	ES												
1 St	udents v	vill stu	udy co	ommor	open s	source s	oftware	e licens	es, oper	n source	project s	tructure			
2 To	o unders	tand d	listrib	outed te	am soft	ware d	evelopn	nent, ar	nd curre	ent events	s in the o	pen sour	ce worl	d	
3 То	o learn f	ree an	d ope	en sourc	ce comp	ponents	& tools	s							
4 St	udents v	will als	so wo	ork on a	n open	source	project	and wi	ll be ex	pected to	o make a	significa	int cont	ribution	
COURSE	OUTC	OME	S												
On the suc	cessful	compl	etion	of the	course,	student	ts will b	e able	0						
CO1: Expla	ain com	mon c	open s	source l	icenses	and the	e impac	et of cho	oosing a	a license		Understa	and		
CO2: Anal	yze the	open s	source	e projec	et struct	ture and	l how to	o succes	ssfully s	setup a p	roject	Analyze			
CO3 Apply	y the lin	ux bas	sed us	er prof	ile, file	securit	y, and f	ïle link	and ma	anageme	nt.	Apply			
CO4: Know	wledge o	of free	and o	open so	ource to	ols like	libre o	ffice, o	pen offi	ice.		Apply			
CO5: App background	•	bre of	fice- j	present	ation li	ke creat	te, open	ı, addin	g slide,	text,		Apply			
MAPPINO														-	
COs PC				PO4		PO6	PO7	PO8	PO9	PO10	PO11			PSO2	
		Ĺ	L	-	L	-	-	-	-	-	-	S	S	S	S
	$\frac{S}{S}$ N	M M	M M	- M	- M	-	-	-	-	-	-	M M	S S	M S	- S
	$\frac{S}{S}$		M L	M	- M	-	-	-	-	-	-	M	<u> </u>	M	3
	$\frac{5}{5}$ N		L L	M	-	-	-	-	-	_	-	M	S	S	S
S- Strong;						-				1		171	5	5	2

SYLLABUS OPEN SOURCE LICENSING

Open Source Licensing, Contract, and Copyright Law-The MIT, BSD, Apache, and Academic Free Licenses-The GPL, LGPL, and Mozilla Licenses-Qt, Artistic, and Creative Commons Licenses-Non-Open Source Licenses.

OPEN SOURCE OPERATING SYSTEM

Linux history-distributions-licensing-installing Linux-working with directories-working with files-working with file contents-the Linux file tree. shell expansion: commands and arguments-control operators-shell variables-file globing. Pipes and commands: I/O redirection-filters -regular expressions. Introduction to vi – scripting: scripting introduction-scripting loops-scripting parameters

LINUX USER MANAGEMENT

local user management- introduction to users-user management-user passwords-user profiles -groups. file security: standard file permissions-advanced file permissions-access control lists-file links.

LIBRE OFFICE -WORD, SPREAD SHEET

Introduction of libre office- WRITER — THE WORD PROCESSOR: Opening a Document -Laying Out the Page- Setting paper size, margins, and orientation -Creating headers and footers -Numbering pages -Entering and Editing Text-Modifying text-Moving and copying text.

CALC — THE SPREADSHEET: Creating a Spreadsheet -Inputting Your Data -Entering your data -Editing your data Filling cells automatically -Managing Columns and Rows-Copying, pasting, cutting, dragging, and dropping your cells -Adding the Art -Formula Basics.

LIBRE OFFICE- PRESENTATION

IMPRESS — THE PRESENTATION Creating a Presentation -Opening an existing presentation -Adding Slides -Adding text to a slide -Saving Your Presentation for Posterity - Making Presentations Picture Perfect -Adding Images -Clipping art -Drawing objects -Coloring Backgrounds - Creating a plain-colored background -Creating a gradient background.

TEXT BOOKS

1. Understanding Open Source and Free Software Licensing By Andrew M. St. Lauren, August 2004, Pages: 207. (UnitI)

2. Linux study link:<u>https://itsfoss.com/learn-linux-for-free/</u> (Unit II &Unit III).

3.https://www.libreoffice.org/assets/Uploads/Documentation/en/GS51-GettingStartedLO.pdf (Unit IV &V)

REFERENCES

1. Andy channelle (2009), "Beginning OpenOffice 3", Aprèss.

2. Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, "Linux in a Nutshell", Sixth Edition, OReilly Media, 2009.

3. N. B. Venkateshwarlu (Ed); Introduction to Linux: Installation and Programming, B S Publishers;2005.

4. Matt Welsh, Matthias Kalle Dalheimer, Terry Dawson, and Lar Kaufman, Running Linux, Fourth Edition, O'Reilly Publishers, 2002.

5. Carla Schroder, Linux Cookbook, First Edition, O'Reilly Cookbooks Series, 2004.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K. Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	Mr.M.Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

17CYEC1	4	KN			BASED		SION		(Category	L	Т	P C	redit
			SU	PPOR	Г SYST	EMS				EC(PS)	3	0	0	3
PREAMBLE The purpose of		urse is to	o impar	t knowl	edge or	n decisi	on supp	ort syst	tems and	implem	entation.	11		
PREREQUIS NIL														
COURSE OB	JECTI	VES												
1 To far	niliariz	e decisi	on supp	oort sys	tems an	d their	charact	eristics						
2 To stu	dy abo	ut Intell	igent D	SS and	applica	ations o	f DSS							
3 To lea	rn Coll	aborativ	ve Com	puting '	Techno	logies								
4 To lea	rn the t	echnolo	ogies re	lated to	decisio	on supp	ort syste	ems						
	rn Elec	tronic (Comme	rce and	Manag	ement-	Support	System	ns.					
COURSE OU	тсом	IES						-						
On the success	ful con	pletion	of the	course,	student	s will b	be able t	0						
CO1: Understa	nd deci	ision ma	aking a	nd com	puterize	ed supp	ort				Understa	and		
CO2: Able to U	Jnderst	and Bus	siness I	ntellige	nce ,Da	ita War	ehousin	g and I	Data Min	ing	Understa	and		
CO3: Understar	nd Colla	aboratio	on, Con	nmunica	ation, E	nterpris	se Decis	sion			Apply			
CO4: Able to	Underst	tand Ar	tificial	Intellige	ence and	d Expei	rt Syste	ms over	r the Inte	rnet.	Apply			
CO5: Able to U	Indersta	and Eleo	etronic	Comme	erce and	l Manaş	gement-	Suppor	rt System	ıs.	Apply			
MAPPING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAM	ME SPE	CIFIC	OUTCO	MES		
COs PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 S	М	S	М	L	-	-	-	-	-	-	М	S	М	М
СО2 М	S	S	S	М	-	-	-	-	-	-	М	М	М	М
CO3 S	М	S	М	М	-	-	-	-	-	-	М	М	-	М
CO4 S														
CO5 S	Μ	М	М	S	-	-	-	-	-	-	-	М	М	-
S- Strong; M-N	Aedium	n; L-Lov	W,											

DECISION MAKING AND COMPUTERIZED SUPPORT

Management Support Systems: An Overview - Decision Making, Systems, Modeling, and Support.

DECISION SUPPORT SYSTEMS

Decision Support Systems: Overview - Modeling and Analysis – Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analysis, and Visualization - Decision Support System Development.

COLLABORATION, COMMUNICATION, ENTERPRISE DECISION

Collaborative Computing Technologies: Group Support Systems -Enterprise Information Systems - knowledge Management.

EVIDENCE COLLECTION AND FORENSICS TOOLS

Artificial Intelligence and Expert Systems: Knowledge-Based System – Knowledge Acquisition, Representation, and Reasoning - Advanced Intelligent Systems - Intelligent Systems over the Internet.

IMPLEMENTING IN THE E-BUSINESS ERA

Electronic Commerce - Integration, Impacts, and the Future of the Management-Support Systems.

TEXT BOOKS

1. Efraim Turban, Jay Aronson E., Ting-Peng Liang, "Decision Support Systems and Intelligent Systems", 7th Edition, Pearson Education, 2013.

REFERENCES

1.Michel R. Klein and Leif B. Methlie, "Knowledge-Based Decision Support Systems With Applications in Business" Wiley; 2nd edition

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in
2	T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

170	CYEC1	5	Ι	NFOR				AL		(Category	L	Т	P C	Credit
					TECH	NIQUI	ES				EC(PS)	3	0	0	3
									them to	understa	and the b	basics of I	Informa	tionRetr	ieval
PRER	EQUIS MININ	ITE						0							
	SE OB														
1	To lear	rn abou	t the bas	sic conc	epts, pra	actical i	ssues ar	nd impao	ct of the	web on]	Informati	ion Retrie	eval		
2	To uno	lerstand	about	the vario	ous IR n	nodels									
3	To get	t an une	derstand	ling of	machin	e learni	ng tech	niques	for text	classific	ation and	d clusteri	ng		
4	To un	derstan	d the va	arious a	pplicati	ons of I	Informa	tion Re	trieval	giving ei	nphasis	to Multir	nedia IF	R	
5	To lay foundation for learning the concepts of digital libraries														
COUR	SE OU	TCOM	1ES												
On the	success	ful con	npletion	of the	course,	studen	ts will t	e able t	0						
CO1: D	escribe	the obj	ectives	of infor	mation	retrieva	al syste	ms				Underst	and		
CO2: L	Jndersta	nd abo	ut the v	arious I	R mode	els						Apply			
CO3: L	Jndersta	nd the	static a	nd dyna	mic inc	lices an	d query	operat	ions			Apply			
CO4 : in	plemen	t cluste	ering alg	gorithm	s like h	ierarchi	ical clus	stering	and clas	ssificatio	n	Apply			
CO5: A	ble to U	Jnderst	and sea	rching	,ranking	g and di	gital lib	oraries				Apply			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC	OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	S	Μ	-	М	М	Μ	-	-	-	-	-	M M	S	S	S
CO2	S S S M M L - M												S	M	M
CO3	S	L	L	-	L	-	-	-	-	-	-	S	M	S	S
CO4	S	S	S	M	M	M	-	Μ	-	-	-	M	S	- -	S
CO5	S	S	M	М	М	L	-	-	-	-	-	М	М	М	Μ
S- Stro	ng; M-N	viediun	1; L-L0	W											

Motivation – Basic Concepts – Practical Issues - Retrieval Process – Architecture - Boolean Retrieval –Retrieval Evaluation – Open Source IR Systems–History of Web Search – Web Characteristics–The impact of the web on IR — IR Versus Web Search–Components of a Searchengine.

MODELING

Taxonomy and Characterization of IR Models – Boolean Model – Vector Model - Term Weighting – Scoring and Ranking –Language Models – Set Theoretic Models - Probabilistic Models – Algebraic Models – Structured Text Retrieval Models – Models for Browsing.

INDEXING

Static and Dynamic Inverted Indices – Index Construction and Index Compression. Searching - Sequential Searching and Pattern Matching. Query Operations -Query Languages – Query Processing - Relevance Feedback and Query Expansion - Automatic Local and Global Analysis – Measuring Effectiveness and Efficiency.

CLASSIFICATION AND CLUSTERING

Text Classification and Naïve Bayes – Vector Space Classification – Support vector machines and Machine learning on documents. Flat Clustering – Hierarchical Clustering – Matrix decompositions and latent semantic indexing – Fusion and Meta learning.

SEARCHING AND RANKING

Searching the Web –Structure of the Web –IR and web search – Static and Dynamic Ranking - Web Crawling and Indexing – Link Analysis - XML Retrieval Multimedia IR: Models and Languages – Indexing and Searching Parallel and Distributed IR – Digital Libraries.

TEXT BOOKS

1. Ricardo Baeza – Yates, BerthierRibeiro – Neto, Modern Information Retrieval: The concepts and Technology behind Search (ACM Press Books), SecondEdition

2. Textbook Retrieval Systems In Information Management by GGChowdhury

REFERENCES

1. ChristopherD.Manning,PrabhakarRaghavan,HinrichSchutze,IntroductiontoInformationRetrieval,Cambridge University Press, First South AsianEdition

2. Stefan Buttcher, Charles L. A. Clarke, Gordon V. Cormack, Information Retrieval Implementing and Evaluating Search Engines, The MIT Press, Cambridge.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.K.Shanthashalini	Assistant Professor	CSE	shanthashalini@avit.ac.in
2	T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

170	CYEC1	6			RASTI			ND		(Category	L	Т	P (Credit
				Ι	MANA	GEME	NT				EC(PS)	3	0	0	3
and ma		nt.	expose	s the stu	idents t	o under	stand tl	ne featu	res of d	lifferent (echnolo	gies invo	lved in	IT infra	structure
NIL COUR	SE OB.	JECTI	VES												
1	To uno	derstan	d the ba	asics of	IT infra	astructu	re								
2	To uno	derstan	d the cu	arrent co	omputir	ng techr	niques i	n IT fie	lds						
3	To explore the business models														
4	To understand the different security management and storage management in IT infrastructure														
5	To understand the service delivery concept in IT field														
COUR	SE OU'	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	e able t	0						
CO1: U	Indersta	nd the	basics o	of IT inf	frastruc	ture						Understa	and		
CO2: U	Indersta	nd the	current	comput	ting tecl	hniques	in IT f	ïelds				Understa	and		
CO3: E	xplore t	he busi	iness m	odels								Apply			
CO4: A infrastru		e differ	ent sec	urity ma	anagem	ent and	storage	e manag	gement	in IT		Apply			
CO5: U	Indersta	nd the	service	deliver	y conce	pt in IT	field					Analyze			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	M M	S S	-	-	-	-	-	М	М	S	S
CO2	S	-	S	-	-	М	Μ	М	-						
CO3	S	Μ	S	-	М	S	-	-	-	-	-	Μ	M	S	S
CO4	S	L	S	М	М	М	-	-	-	-	-	L	S	М	-
CO5	S	S	S	М	М	М	-	-	-	-	-	Μ	Μ	М	Μ
S- Stro	ng; M-N	Aedium	n; L-Lov	W											

IT system Management

Common tasks in IT system management, approaches for organization Management, Models in IT system design, IT management systems context diagram, patterns for IT system Management.

IT Infrastructure Management

Factors to consider in designing IT organizations and IT infrastructure, Determining customer's Requirements, Identifying System Components to manage, Exist Processes, Data, applications, Tools and their integration, Patterns for IT systems management, Introduction to the design process for information systems, Models, Information Technology Infrastructure Library (ITIL).

Establishing business value of information system

Information system costs and benefits, Capital budgeting for information system, Real Options pricing models, Limitation of financial models.

Service Delivery and Service Support Management

Service-level management, financial management and advantages of financial management -Service support process, Configuration Management-Incident management.

Storage Management and Security Management

Types of Storage management, Benefits of storage management, backups, Archive, Recovery, Disaster recovery-Introduction Security, Identity management, Single sign-on, Access Management.

TEXT BOOKS

1. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.

2. J. Parkin and D. Sharma, Infrastructure planning, Thomas Telford, London, 1999

REFERENCES

1. P. Chandra, Projects: Planning, analysis, selection, financing, implementation, and review, Tata McGraw-Hill, New Delhi,2009.

2. J. D. Finnerty, Project financing - Asset-based financial engineering, John Wiley & Sons, New York, 1996.

3. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.K.Shanthashalini	Assistant Professor	CSE	<u>shanthashalini@avit.ac.in</u>
2	Mr.B.Sundaramurthy	Associate Professor	CSE	sundaramurthy@vmvkec.edu.in

170	CYEC1	7	VIR	TUAL	IZATI	ON TE	CHNI	QUES			Category	L	Т	P C	Credit
											EC(PS)	3	0	0	3
PREA Thissyl machin	llabusisi	ntende	dforthel	Enginee	eringstu	dentsan	Idenabl	ethemto	ounderst	tandthel	oasicsvirt	ualization	andvirtu	ıal	
	EQUIS	ITE													
COUR	SE OB	JECTI	VES												
1	To un	derstan	d the co	oncepts	of virtu	alizatio	on and v	virtual n	nachine	s					
2	To un	derstan	d the in	plemer	ntation	of proce	ess and	system	virtual	machin	es				
3	To exp	plore th	e aspec	ts of hi	gh level	langua	ige virti	ual mac	hines						
4	To gai	in expe	rtise in	server,	networl	c and st	orage v	irtualiz	ation						
5	To un	derstan	d and d	eploy p	ractical	virtual	ization	solution	ns and e	nterpris	e solutior	ıs			
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	s will t	e able t	0						
CO1: I	nstall an	ld confi	igure vi	rtualiza	tion tec	hnolog	y such a	as VMv	vare			Apply			
CO2: C	Configur	e and r	nanage	virtual	network	c and st	orage s	uch as v	Center	server	or ESxi	Apply			
CO3: [Deploy,	manage	e and m	igrate v	irtual m	achine	s.					Apply			
CO4: D Storage			hitectu	e of a I	Data Ce	nter en	vironme	ent with	n RAID	and Int	elligent	Apply			
CO5: C	-		nanage	a Stora	ge Area	Netwo	rk (SA	N).				Apply			
MAPP	'ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMN	ME SPI	ECIFIC (DUTCON	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S	-	-	-	М	S	-	Μ					
CO2	S	Μ	L	-	М	-	-	-	-	-	-	L	-	Μ	-
CO3	S	S	М	-	-	-	-	-	-	-	-	Μ	S	-	Μ
CO4	S	S	L	-	-	-	-	-	-	-	-		-	Μ	-
CO5	S	М	L	-	L	-	-	-	-	-	-	L	М	-	S
S- Stro	ng; M-N	Aedium	n; L-Lov	N											

SYLLABUS OVERVIEW OF VIRTUALIZATION

System architectures - Virtual Machine basics - Process vs System Virtual Machines - Taxonomy. Emulation: Basic Interpretation - Threaded Interpretation - Precoded and Direct Threaded Interpretation - Binary Translation. System Virtual Machines - Key concepts - Resource utilization basics.

PROCESS VIRTUAL MACHINES

Implementation – Compatibility – Levels – Framework – State Mapping – Register – Memory Address Space – Memory Architecture Emulation – Memory Protection – Instruction Emulation – Performance Tradeoff - Staged Emulation – Exception Emulation – Exception Detection – Interrupt Handling – Operating Systems Emulation – Same OS Emulation – Different OS Emulation – System Environment

HIGH LEVEL LANGUAGE VIRTUAL MACHINES AND SERVER VIRTUALIZATION

HLL virtual machines: Pascal P-Code – Object Oriented HLLVMs - Java VM architecture - Java Native Interface - Common Language Infrastructure. Server virtualization: Partitioning techniques - virtual hardware - uses of virtual servers - server virtualization platforms.

NETWORK AND STORAGE VIRTUALIZATION

Design of Scalable Enterprise Networks – Layer2 Virtualization – VLAN - VFI - Layer 3 Virtualization – VRF - Virtual Firewall Contexts - Network Device Virtualization - Data- Path Virtualization - Routing Protocols. Hardware Devices – SAN backup and recovery techniques – RAID – Classical Storage Model – SNIA Shared Storage Model – Virtual Storage: File System Level and Block Level.

APPLYING VIRTUALIZATION

Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – Executors – synchronizers – Socket Programming – UDP Datagram – Introduction to Java Beans.

TEXT BOOKS

1.Cay S. Horstmann and Gary Cornell, "Core Java: Volume I – Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.

REFERENCES

1. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann,2005.

2. David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center", Auerbach Publications, 2006.

3. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.

4. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress2005.

5. Kenneth Hess, Amy Newman, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, 2010.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs.Shobana	Assistant Professor (GII)	CSE	shobana@avit.ac.in
2	T.Narmadha	Assistant Professor	CSE	Narmadha@vmkvec.edu.in

170	CYEC1	8		USER	INTER	FACE	DESIG	GN			Category	L	Т	P C	Credit
											EC(PS)	3	0	0	3
about U and ind	llabus i	rface E andard	Design s	o that th								basics an aportance			
	SE OB.	JECTI	VES												
1		part bas ce desi		wledge	in vario	ous user	[·] interfa	ces so t	hat the	student	will unde	rstand the	import	ance of	user
2	To inc	To inculcate the knowledge of key theories and frameworks that underlie the design of most interfaces today													
3	To lay	To lay foundation for learning industry standard methods for approaching user interface design													
4	Positio	on their	[•] knowl	edge an	d skills	against	curren	t social	and eth	nical cor	ncerns				
	SE OU			of the	course,	student	ts will b	e able t	to						
	Understa teristics									ce,		Understa	and		
	earn Us			• •								Understa	and		
CO3: K based co				es and p	resenta	tion sty	les, dev	rice bas	ed cont	rols and	Screen-	Apply			
CO4: I	mpleme	nt the c	oncept	of netw	ork sec	urity fo	or web p	ages a	nd multi	imedia.		Analyze			
CO5: D	•		•		• •			•		•		Analyze			
												OUTCOM		-	
COs	PO1			PO4		PO6	PO7	PO8	PO9	PO10	PO11	PO12			PSO3
CO1	S	Μ	L	-	М	-	-	-	-	-	-	Μ	S	М	М
CO2	S	М	L	L	М	-	-	-	-	-	-	M	S	-	-
CO3															
CO4	S M L L M L S M M														
CO5	S ng; M-N	M		-	М	-	-	-	-	-	-	М	S	М	-
5- Stro	ng; M-N	neulum	I, L-L0	W											

Introduction-Importance – Human Computer Interface – Characteristics of GUI – Direct manipulation graphical system- Web user interface – Popularity – Characteristics and Principles

USER INTERFACE DESIGN PROCESS

User interface design process – Obstacles – Usability – Human characteristics in design – Human interaction speed – Business functions – Requirements analysis – Direct – Indirect methods – Basic business functions – Design standards – System Timings – Human consideration in screen design – Structures of menus – Functions of menus – Contents of menu – Formatting – Phrasing the Menu – Selecting menu choice – Navigating menus – Graphical menus

WINDOWS

Windows: Characteristics – Components – Presentation styles – types – Managements – Organizations – Operations – Web systems- device- based controls: Characteristics – Screen-based controls: Operate control – Text boxes – Selection control – Combination control – Custom control – Presentation control.

NETWORK SECURITY

Text for web pages – Effective feedback – Guidance & assistance – Internationalization – Accessibility – Icons – Image – Multimedia – Coloring.

WINDOWS LAYOUT- TEST

Windows layout-test: Prototypes – Kinds of tests – Retest – Information search – Visualization – Hypermedia – WWW –Softwaretools.

TEXTBOOKS

1. Maurice J. Bach, "The Design of the Unix Operating System", Pearson Education 2002. 1. Wilbent. O. Galitz, "The Essential Guide to User Interface Design", John Wiley &Sons

2.Designing Interfaces : Patterns For Effective Interaction Design 2nd Edition By JeniferTidwell

REFERENCES

1. Ben Sheiderman, "Design the User Interface", PearsonEducation.

2. Alan Cooper, "The Essential of User Interface Design", Wiley - Dream TechLtd.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mrs. S. Leelavathy	Assistant Professor (G- II)	CSE	leelavathy@avit.edu.in
2	T.Narmadha	Assistant Professor	CSE	Narmadha@vmkvec.edu.in

17CYEC19		,	OPTIMIZATION TECHNIQUES						Categ	gory	L	Т	Р	Credit	
			01			ZATION TECHNIQUES				EC(PS)	3	0	0	3
PREA	MBL	E											ı	ı	
contro Jobs to	l probl	ems, M cants, T	Iainten Franspo	ance a	nd Rep	lacem	ent pro	blems,	Seque	encing a	nd Sche	duling _l	problems	s, Assigr	nventory iment of il for all
PRER	EQUI	SITE -	NIL												
COUR	RSE O	BJECT	FIVES												
1		thorou ammin			ır prog	rammin	ng prob	olem ar	nd form	ulate a	real wor	ld probl	em as a	mathema	atical
2	To acquire knowledge of linear programming, assignment and transportation problems.														
3	To acquire skills in handling techniques of PERT, CPM and sequencing model.														
4	To be get exposed to the concepts of Inventory control.														
5	To study decision theory and game theory techniques to analyze the real world systems.														
COUR	RSE O	UTCO	MES												
On the	he succ	essful	comple	etion of	f the co	ourse, s	tudents	s will b	e able	to					
CO1. F	CO1.Formulate and Solve the Linear programming problem. Apply														
CO2.Solve specialized linear programming problems like the Transportation and Assignment Apply problems.									7						
CO3.	Predict	the she	ortest p	oath in	networ	k prob	lems.							Analyze	
CO4. Design a continuous or periodic review inventory control system.											Apply				
CO5. Solve larger problem using technical knowledge and complete tasks on time.											Apply				
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6		PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	М	-	-	_	-	-	-	S	М	М	М
CO2	S	S	М	М	М	-	-	-	-	-	-	S	М	S	М
CO3	S	S	S	М	М	-	-	-	-	-	-	S	М	S	М
CO4	S	S	S	М	М	-	-	_	-	-	-	S	М	S	М
CO5	S	S	S	Μ	Μ	-	-	-	-	-	-	S	Μ	S	Μ
S- Stro	ong; M	-Mediu	ım; L-I	LOW											
SYLL	ABUS														

LINEAR PROGRAMMING: Linear programming problem – Graphical method - Simplex method – Big M method – Duality principle.

TRANSPORTATION MODEL: Transportations problem – Assignment problem – Under Assignment - Travelling salesman problem.

NETWORK MODEL: Project Network – CPM and PERT Networks – Critical path scheduling – Sequencing Models.

INVENTORY MODELS: Inventory Model – Economic Order Quantity Model – Purchasing Model (with and without shortages) – Manufacturing Model (with and without shortages) - Stochastic Inventory Model (Stock in discrete and continuous units).

DECISION MODEL: Decision Model – Game theory – Two Person Zero sum game – Algebraic solutions Graphical solutions – Replacement model – Model based on Service life – Economic life single / multivariable search technique.

TEXTBOOKS:

- 1. H.A.Taha, "Operations Research: An Introduction", Prentice Hall of India, 1999, sixthedition.
- 2. Kanti Swarup, P.K.Gupta, Man Mohan, "Operations Research" S.Chand & Sons, New Delhi,(2010).

REFERENCES:

- 1. Sundarasen.V, Ganapathy subramaniyam .K.S,Ganesan.K. "Resource Management Techniques", A.R. Publications, Chennai(2013).
- 2. Premkumar Gupta, D.S. Hira, "Operations Research" S. Chand & company NewDelhi.

S.No	Name of the Faculty	Designation	Department	Mail ID		
1	Mrs.V.T.Lakshmi	Associate Professor	Mathematics	lakshmi@vmkvec.edu.in		
2	Mr.D.Balaji	Asso.Prof.grade I	AVIT	balajiduraiswamy1984@gmail. com		

17CYEC20		20		MACHINE LEARNING							Category	L	Т	P C	Credit
											CC	3	0	0	3
To pro types o	of mach	ine lear	rning w	vith suit	able ju	stificati	ion.	C			entify ap	plications	suitab	le for di	fferent
PRER	EQUIS	ITE: I	NTROE	OUCTIO	ON TO	ARTIF	ICIAL	INTEL	LIGEN	CE					
COUR	SE OB	JECTI	VES												
1	To study the outline the key concepts of machine learning														
2	To understand the supervised learning and classification techniques														
3	To apply the concept of unsupervised learning and Clustering for applications														
4	To infer theoretical and practical aspects of reinforcement learning														
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will b	e able 1	.0						
CO1: (Dutline t	he key	concep	ts of ma	achine l	earning						Underst	and		
CO2:St	ummari	ze supe	rvised l	earning	and cla	assificat	tion tec	hniques	5			Underst	and		
CO3: A	Apply th	e conce	pt of u	nsuperv	ised lea	rning a	nd Clus	stering	for appl	ications	5	Apply			
CO4:In	CO4:Infer theoretical and practical aspects of reinforcement learning Understand														
CO5: I	CO5: Infer theoretical and practical aspects of reinforcement learning										Understand				
MAPP	PING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPI	ECIFIC (OUTCON	/IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	L	-	-	-	-	-	L	L	-	-
CO2	S	S	S	L	-	L	-	L	L	-	L	L	S	М	L
CO3	S	S	М	L	-	L	-	L	L	-	L	L	S	Μ	L
CO4	S	L	М	L	-	L	-	-	-	-	-	L	-	-	-
CO5	S	L	S	-	-	L	-	L	-	-	-	L	-	L	-
S- Stro	ng; M-N	Medium	i; L-Lov	W											

SYLLABUS INTRODUCTION

Machine Learning - Examples of machine learning applications- Types of machine learning –Model selection and generalization – Guidelines for Machine Learning Experiments

SUPERVISED LEARNING

Classification - Decision Trees – Univariate Tree –Multivariate Tree - Pruning –Perceptron – Multilayer Perceptron - Back Propagation – Cross Validation and Resampling Methods

UNSUPERVISED LEARNING

Clustering- Mixture densities -K-means - EM Algorithm – Supervised Learning After Clustering-Hierarchical Clustering

DIMENSIONALITY REDUCTION

The Curse of Dimensionality –Subset Collection - Principal Component Analysis - Factor Analysis – Linear Discriminant Analysis

REINFORCEMENT LEARNING

Single State Case – Elements of Reinforcement Learning - Model Based Learning – TemporalDifference Learning –Generalization in Reinforcement Learning - Policy Search

TEXT BOOKS

1. EthemAlpaydin, Introduction to Machine Learning MIT Press, 2014.

REFERENCES

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013
- 2. Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction. MIT Press

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Professor	CSE	rjaichandran@avit.ac.in
2	T.Narmadha	Assistant Professor	CSE	Narmadha@vmkvec.edu.in

170	CYEC2	1		DA	TA AN	JALYI	TICS				Category	L	Т	Р	Credit	
											EC(PS)	3	0	0	3	
the job streams take up PRERE	ourse is t opportu s like IT o their pr	inities and E oject v	of B. Te ECE. Th	ech. stu nis will	dents in not on	n corpo ly enha	rate sec ince the	ctors as eir job	well as	govern	ment age	ncies car	be exte	ended	to increase to the other to they can	
NIL COURS	SE OBJ	ЕСТГ	VES													
1	To une	derstan	d data a	and usa	ge of d	ata in s	olving	real tim	ne prob	lems						
2	To int	roduce	genera	l idea c	of datab	ase ma	nageme	ent syst	ems							
3	To exp	plains t	he fund	lamenta	al conce	epts of	big dat	a analy	tics and	data vi	sualizatio	n				
COURS	SE OUT	COM	ES													
On the s	uccessf	ul com	pletion	of the	course,	student	ts will l	be able	to							
CO1: U	Jndersta	nd data	a and us	sage of	data in	data ar	nalytics						Und	erstand	1	
CO2: A	Apply da	ita anal	ytics te	chniqu	es for v	visualiza	ation th	rough l	Excel				А	pply		
CO3: E	Examine	how to	o visual	ize trei	nds and	discov	er insig	ghts of a	lata				А	pply		
CO4: S into rela			y- Rela	tionshi	p (E-R)	model	from s	pecific	ations a	ind trans	sform it		А	pply		
CO5: A			sign mu	ultidim	ensiona	l data r	nodels						An	alyse		
CO6: D Update,			eries to	perfor	m CRU	D oper	ations	on data	base (C	breate, R	etrieve,		C	reate		
												IC OUTCOMES				
	PO1		PO3	PO4		PO6	PO7	PO8	PO9	PO10	PO11	PO12		PSO	PSO3	
CO1	~	M			M								M			
CO2	S	M S			M				M	M				N		
CO3 CO4	M M	S S			M M				M M	М		М		N		
CO4	M	S S			M				M	М		M		10	•	
CO6	M	S			M				M	141		M	M	N		
	g; M-M		; L-Lov	v	141		I		-'*						I	

SYLLABUS

INTRODUCTION TO DATA ANALYTICS

Introduction, MS Excel Basics (options: Create, Save Rename, Add, Delete), Editing data in Worksheet (options: Insert, Select, Delete, Copy & Paste, Find & Replace) Formatting Cells, Worksheets (operations: Add/Remove Columns & Rows, Hiding/Unhiding Columns & Rows, Merging Cells), Setting Colors.

MANIPULATION OF EXCEL DATA

Working with Formula: Data Filtering, Sorting, Use of Range, Functions: SUM(), AVERAGE(), MAX() & MIN(), COUNT() & COUNTA(), IF(), Data Representation using Charts & Graphs, Creation of Pivot table, Create a Chart, Change Chart Type, Switch Row/Column, labels and legends, Print Area.

BASICS OF DBMS

Introduction, Characteristics, Data models (Entity-Relationship Model, Relational Model, Network model), Relational algebra.

DATA VISUALIZATIONS:

Getting started with basic design templates, Multidimensional Models, Basic Design, Chart Generation, Dashboard Creation, Data Visualization.

BASICS OF OPEN SOURCE RDBMS:

Introduction, Installation, MySQL Commands (Administrative Commands), Various Syntax of SQL, DDL and DML Commands.

TEXT BOOKS

1. Microsoft Excel 2013 Step by Step, Curtis D. Frye, Microsoft Press 2013.

2. Database System Concepts, Abraham Silberschatz, Prof. Henry F. Korth, and S. Sudarshan, McGraw-Hill Education Publications, 3rd Edition.

REFERENCES

1. Learning Tableau, Joshua N. Milligan, ISBN 139781784391164, PACKT Books - Packt Publishing.

COURSE DESIGNERS

S. No.	Faculty		Department	Mail ID
1	Mrs.S.Leelavathy	Assistant Professor (G II)	CSE	leelavathy@avit.ac.in
2	Mr.M.Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

17CYEC22	PROBLEM IDENTIFICATION AND DESIGN THINKING	Category	L	Т	Р	Credit
	DESIGN THINKING	EC(PS)	3	0	0	3

PREAMBLE

This course applies to everyday problems in order to create human-centered innovations. Envisioned as a collaborative lab, it fosters the integration of research, problem-forming and problem-solving, aesthetics, technology, prototyping, and publishing, with a strong focus on user's needs. It will address design needs through research on end users, creating a human-centric point of view as a guide. It will drive students to experiment with ideas, to analyze case studies and to build rapid prototypes, in order to test and communicate the proposed product.

PREREQUISITE

NIL

COURSE OBJECTIVES

I	Intro	luce stu	dents t	o a disc	inline	design	thinkin	a that e	nhance	s innov	ation acti	ivities in	terms of	value cr	reation
1										d views		i vitico III		value el	cation,
2	Stren; hypot	gthen st	udents	individ	ual and	l collab	orative	capabi	lities to	identif		ns/issues neaningfu			
3		n studen nmenda									le innova	ation poss	sibilities	and	
COURS				·				0							
On the s	uccessi	ful com	pletion	of the	course,	student	ts will l	be able	to						
CO1: E persona				inking (can be a	applied	in a wi	ide rang	ge of co	ntexts,	from the		Under	rstand	
CO2: L	Jnderst	and hov	v to ple	ease and	l win as	s a desig	gners						Under	rstand	
CO3: I	nitiate a	an attitu	ide of p	olayfuln	ess to a	id desi	gn thin	king					Ар	ply	
CO4: l	Jse con	nputing	tools a	nd onli	ne envi	ronmen	its						Ар	ply	
CO5: A										-				ply	
			ROGR	AMME				-				OUTCO			-
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1									М			М			
CO2	S								Μ						
CO3														L	L
CO4		S	S		S				М			М		L	L
CO5		S	S		S				М			М		L	L
S- Stron	g: M-N	/ledium	·IIou	x 7											

SYLLABUS

STAGES OF THINKING:

Why Design Thinking, The Design Process, Stages of Design Thinking, Research- Identifying drivers, Information gathering, Target groups, Samples and feedback

IDEA GENERATION:

Idea generation- Basic design, Themes of thinking, Inspiration and References, Brainstorming, Value, Inclusion, Sketching, Presenting ideas, Refinement - Thinking in images, Thinking in signs, Appropriation, Humour, Personification, Visual metaphors, Modification, Thinking in words, Words and language, Type 'faces', Thinking in shapes, Thinking in proportions, Thinking in color

REFINEMENT:

Thinking in images – Thinking in signs – Appropriation – Humour – Personification – Visual metaphors – Modification – Thinking in words – Words and language – Type 'faces' – Thinking in shapes – Thinking in proportions – Thinking in colour

PROTOTYPING:

Developing designs, 'Types' of prototype, Vocabulary, Implementation-Format, Materials, Finishing, Media, Scale, Series/Continuity

DESIGNING TO WIN/ PLEASE:

Formula One Designing – Radical innovation – City / Car Design – Learning from Failures – Design Process and Working Methods – Product Innovations – Learning from Failures – Design Process and Working Methods

TEXT BOOKS

- 1. Designing for Growth: A Design Thinking Tool Kit for Managers, Jeanne Liedtka and Tim Ogilvie, Columbia University Press, 2011
- 2. Design Thinking: Understanding How Designers Think and Work, Niger Cross, BERG 2011

REFERENCES

1. The Art of Innovation: Lessons in Creativity From IDEO, Tom Kelly, America's Leading Design Firm (Profile Books, 2002)

2. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, Tim Brown, Harper Business, 2009

3. The Design of Business: Why Design Thinking Is The Next Competitive Advantage, Roger Martin, (Harvard Business Review Press, 2009)

4. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Alexander Osterwalder and Yves Pigneur, John Wiley and Sons, 2010

5. Design Thinking: Understanding How Designers Think and Work, Nigel Cross, Bloomsbury Academic, 2011

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Nithya	Professor	CSE	hodcse@vmkvec.edu.in
2	Mrs.Shobana	Assistant Professor (GII)	CSE	shobana@avit.ac.in

17MBHS04	TC	DTAL	QUA	LITY			Catego	ry	L	Т	P	· (Credit
17/0100304	Μ	[ANA	GEM	ENT		F	EC(OE)		3	0	0		3
PREAMBLE:													
Quality is the mantra f	for success of	or eve	en for	the s	urviva	l of ai	ny orga	nizatio	on in	this c	comp	oetitive	e globa
market. Total Quality	Managemer	nt (TÇ	QM) i	s an e	enhanc	ement	t to the	traditi	onal	way o	of do	oing bi	usiness
TQM integrates fundation	mental man	ageme	ent te	chniq	ues, ez	xisting	; impro	vemen	t effc	orts, a	nd to	echnic	al tool
under a disciplined ap	proach for	provi	ding	qualit	y of p	roduc	ts and	proces	ses.]	lt bec	come	es esse	ntial to
survive and grow in glo	obal markets	s, orga	anizat	tions	will be	requi	red to d	levelop	cust	omer	focu	is and	involv
employees to continua	lly improve	Quali	ity an	d kee	p susta	inable	e growt	h.					
PREREQUISITE: NIL													
COURSE OBJECTIVE	ES:												
1. To understand the T	otal Quality	/ Man	agem	nent co	oncept	s.							
2. To practice the TQM	A principles												
3. To apply the statisti	cal process	contro	ol										
4. To analyze the varie	ous TQM to	ols											
5. To adopt the quality	v systems.												
COURSE OUTCOMES	5:												
After successful complet	ion of the co	urse, s	studen	ts will	be abl	e to							
CO1: Understand the i	mportance of	of qua	lity a	nd T(QM at	manag	gerial le	evel.		1	Unde	erstand	l
CO2: Practice the relev	vant quality	impro	ovem	ent to	ols to i	mpler	nent T	QM.		1	Appl	у	
CO3: Analyse various	TQM paran	neters	with	help	of stat	stical	tools.			1	Anal	ysing	
CO4: Assess various T	QM Techni	ques.]	Eval	uate	
CO5: Practice the Qua	lity Manage	ment	Syste	ems in	a diff	erent	organiz	ation		1	Appl	y	
Environment.													
MAPPING WITH P	ROGRAM	ME C)UT(COM	ES AN	D PR		MMF	E SPI	ECIF	IC (DUTC	OMES

COs	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	PO10	POII	PO12	PSOI	PSO2	PSO3
CO1	М	-	-	-	-	-	L	L	L	М	L	М	L	-	-
CO2	М	-	-	-	L	L	-	L	М	М	-	L	L	-	-
CO3	S	S	М	S	S	-	-	L	-	L	-	L	-	М	-
CO4	L	М	S	L	М	-	L	-	L	М	L	М	-	-	-
CO5	L	L	М	-	L	М	S	S	М	L	L	М	L	-	-
S- Stro	ng; M	-Medi	ium; I	L-Low	7										
SYLLA	ABUS	:													

INTRODUCTION

Quality: Definition - Dimensions - Planning- costs – Analysis Techniques for Quality Costs- Basic concepts of Total Quality Management- Historical Review- Principles - Leadership – Concepts- Role of Top Management-Quality Council – Quality Statements- Strategic Planning- Deming Philosophy- TQM Implementation – Barriers.

TQM PRINCIPLES

Customer satisfaction – Perception of Quality- Complaints- Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment - Teams- Recognition and Reward- Performance Appraisal- Benefits-Continuous Process Improvement – Juran's Trilogy- PDSA Cycle- 5S – Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC)

The Seven tools of Quality- Statistical Fundamentals – Measures of central Tendency & Dispersion- Population and Sample- Normal Curve- Control Charts for variables and attributes- Process capability- Concept of six sigma- New seven Managementtools.

TQM TOOLS

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs-FMEA – Stages of FMEA.

QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill-1991.

REFERENCES:

- James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) - 2002 (ISBN0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Hcinemann Ltd Oxford.1989.
- Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

s.	No	Name of the Faculty	Designation	Department	Mail ID
1		A. Mani	A. Mani Associate Professor		mani@vmkvec.edu.in
2		Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

17MBHS03	ENGINEERING	Category	L	Т	Р	Credit
	MANAGEMENT AND ETHICS	EC(OS)	3	0	0	3

PREAMBLE:

Engineering management provides technological problem-solving ability of engineering and the organizational to oversee the operational performance of complex engineering enterprises to Engineers. Engineers require honesty, impartiality, fairness, and equity, and dedication to the protection of the public health, safety, and welfare. Ethics emphasises the importance of moral issues, rights and duties of the employees through basic ethics confronting individuals and organizations engaged. It also emphasise values that are morally desirable in engineering practice and research. It allows them to understand various occupational crimes and learn the moral leadership.

PREREQUISITE: NIL

COURSE OBJECTIVES:

1. To Understand the principles of planning at various levels of the organisation.

2. To analyse and practice the concepts of organizing, staffing to higher productivity.

3. To apply the concepts related to directing and controlling.

4. To understand and apply the case studies to practice code of ethics in organisation.

5. To apply the ethical principles in working environment.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of planning principles in organization	Understand
CO2: Apply the various strategies of organising and staffing process.	Apply
CO3: Analyse various leadership skills and control techniques for shaping the	Analyse
organization.	
CO4: Understand and apply best ethical practices in organisation	Analyse
CO5: Analyse and Apply relevant ethical practices in engineering.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	L	S	М	М	L	S	S	S	S	S	S	М
CO2	М	L	L	-	М	М	М	L	М	S	М	М	М	М	М
CO3	М	М	L	-	М	М	М	L	L	S	S	М	М	М	М
CO4	L	М	-	М	-	М	S	S	S	S	-	М	М	-	L
CO5	М	М	-	L	-	М	S	S	S	S	-	М	L	М	L
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS:

PLANNING

Management – Nature & Scope – Functions of Management – Levels of Management – Role of Managers - Nature and purpose of planning - Planning process - Types of plans – Objectives Managing by objective (MBO) - Decision Making - Types of decision - Decision Making Process - Decision Making under different conditions.

ORGANIZING & STAFFING

Nature and purpose of organizing - Organization structure - Formal and informal Organization - Line and Staff authority - Depart mentation - Span of control - Centralization and Decentralization - Delegation of authority - Staffing - Selection and Recruitment - Orientation - Career Development - Career stages – Training Methods - PerformanceAppraisal.

DIRECTING & CONTROLLING

Creativity and Innovation - Motivation and Satisfaction - Motivation Theories - Leadership Styles - Communication -Barriers to effective Communication – Controlling – Controlling Techniques - Organization Culture - Elements and types of culture – Managing cultural diversity.

INTRODUCTION TO ETHICS

Moral dilemmas -Uses of Ethical Theories- Engineering As Social Experimentation- Engineer's Responsibility For Safety-Codes of Ethics-Challenger Case Study.

ETHICS IN ENGINEERING

Employed Engineers Rights and Duties- Collective Bargaining - Occupational Crime - Global Issues-Multinational Corporation- Technology transfer - Engineers as managers - Consulting Engineers - Expert Witness-Moral Leadership.

TEXT BOOKS:

1. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8thedition.

2. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.

3. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw Hill, New York(2005).

REFERENCES:

1. Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico,(1999).

2. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management - A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.

3. Andrew J. Dubrin, 'Essentials of Management', Thomson South-western, 7th edition, 2007.

4. Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi, (2004)

5. David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press,(2003).

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mail id
1	M. Manickam	Associate	Management	manickam@vmkvec.edu.in
		Professor	Studies	
2	C. M. Muthukrishna	Assistant	Management	Muthukrishna.mba@avit.ac.in
		Professor	Studies	

17MBHS0	5					DOIN	HOLE			tegory	L		Т	Р	Credit
17101150	5		МАВ	KET	ING T ENGI		NIQUE RS	S FOI	EC(OE)	3		0	0	3
PREAMBLE: productivity o introducing ar Marketing tec Marketing tec teams to demonstration about clients p PREREQUIS	of firm nd pro hniqu hniqu pron isonpi potent	ns. M omoti les ar les fo note roduc tial ne	arketi ing the re sign or eng und ctsand	ng inc e prod ifican ineers lerstar	cludes uct or t mana s empl nding	adver servio ageme hasise of	tising, ce into ent pro es the the	prome the m cess th ways pro	otions, narket a nat incl to Wo oduct,	public and enh udes th ork clos Gives	relation ancing e distri sely wi s tec	ns, and s sales fr bution of th adve hnical	sales and rom the of marke ertising prese	d proc buying eting a and m a ntatior	cedure of g public. ctivities. a rketing
COURSE OBJ			5:												
1. To understan	nd the	conce	ept of 1	narket	ing.										
2. To analyse v	arious	s indic	cators of	of mar	keting										
3. To assess the	e prod	uct Pi	romoti	on and	releva	nt Stra	ategies.								
4. To evaluate	marke	t chai	nnel fo	r Prom	notion .	,									
5. To Apply and	d prac	ctice F	Promot	ional a	activitie	es cov	ering o	nline N	/larketir	ıg.					
COURSE OU	TCOM	MES:													
After successfu	ıl com	pletic	on of th	e cour	se, stu	dents	will be	able to)						
CO1: Understa	nd the	e basic	es of m	arketi	ng opp	ortuni	ties						Unde	rstand	
CO2: Analyse t	the rel	evant	marke	eting e	nginee	ring st	rategie	S					Analy	yse	
CO3: Apply an	alytica	al ski	lls in s	olving	Produ	ct pror	notion	al chall	enges				Appl	У	
CO4: Assess th	e mar	keting	g distri	bution	strate	gies							Analy	yse	
CO5: Analyse t	the dig	gital r	narketi	ng tec	hnique	s for b	oth Pro	oduct a	nd Mar	ket Proi	notion		Analy	yse	
MAPP	PING	WIT	H PR(OGRA	MME	OUT	COMI	ES AN	D PRO	GRAM	IME SP	ECIFIC	C OUTC	COMES	3
COs PO1 F	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	
CO1 -	-	-	L	-	L	М	М	L	S	-	L	L	-	-	
CO2 -	-	-	L	L	L	М	М	М	М	-	М	-	-	L	
CO3 L	-	-	L	L	L	-	-	М	М	L	М	-	М	М	
CO4 L	-	-	М	L	L	-	-	-	М	М	М	-	М	L	
CO5 L	М	М	М	М	М	-	-	М	М	М	М	М	М	М	
S- Strong; M-I	Mediu	ım; L	L-Low												<u>_</u> .
SYLLABUS:															
Basics of Marl	keting	ç													

Meaning – Definition and Importance of Marketing – Difference between Selling and Marketing – Approaches to the study of Marketing – Marketing concept – Market Segmentation – Basic for segmenting the consumer market – Marketing Environment - macro and micro components and their impact on marketing decisions - Buyer Behaviour.

Marketing Engineering:

Marketing engineering – importance – Marketing environment decision – Marketing Engineering approach- Marketing Engineering opportunities – Re-engineering Marketing –tools for Marketing engineering –Dynamic effects of Marketing engineering.

Product Promotion

Product – Meaning and Definition – Product Policy – Classification of Products – Product mix – product line strategies – Branding– Product life cycle – New Product Development case studies - Pricing – Importance of Price – Objectives of Pricing- Factors affecting Price determination – Pricing Policies – kinds of Pricing – Pricing of New products – Discounts and Allowance- Resale – Price maintenance.

Market Promotion

Channels of Distribution – Factors influencing the choice of a channel – Channel of Distribution for consumer and Industrial goods – Middlemen – Kinds of Wholesalers and retailers and their functions- Promotional mix- Factors determining promotional mix – Sales promotion – Objectives – Types- Advertising Budget – Personal Selling – Kinds of Advertising – Benefits — Personal selling – kinds of salesmen – Function – Qualities of a good salesmen- process of selling.

Marketing Research and Online Marketing

Marketing Research: Meaning and scope of marketing research; Marketing research process- Social, ethical and legal aspects of marketing; Marketing of services; International marketing; Green marketing; Cyber marketing; Relationship marketing and other developments of marketing. The evolution of online marketing technologies – Difference between online and traditional advertising - Difference between search engines and search advertising – Measuring the effectiveness of online advertising- improving paid search engines.

TEXT BOOK:

- 1. Philip Kotler, Marketing Management, Millennium Edition, Prentice HallPublication.
- 2. KS Chandrasekar, "Marketing management Text and Cases", Tata McGrawHill Vijaynicole, Firstedition, 2010
- 3. Gary L. Lilien (Author), Arvind Rangaswamy (Author), De Bruyn, Arnaud (Author) "Principles of Marketing Engineering and Analytics"– April 21,2017

REFERENCES:

- 1. Ramasamy & Namakumari, Marketing Management, MacmillanPub.
- 2. Arunkumar, Meenakshi, Marketing Management, VikasPub.
- 3. Sherlaker.S.A, Marketing Management, HPH
- 4. Rajan Saxena, Marketing Management, TMH
- 5. Beri. C. G, Marketing Research, Sultan ChandPub.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	mailid
1	Dr. P. Marishkumar	Associate Professor	Management Studies	marishkumarp@vmkvec.edu.in
2	Dr. L. RAJESHKUMAR	Asst. Professor	Management Studies	Rajesh.mba@avit.ac.in

Preamble

This course deals with the various disasters and to expose the students about the measures, its effect against built structures, and Hazard Assessment procedure in India. This course also deals with the methods of mitigating various hazards such that their impact on communities isreduced.

Prerequisite

NIL

Course Objectives

2 To Understand Definitions and Terminologies used in Disaster Management	
3 To Understand the Challenges posed by Disasters	
4 To understand Impacts of Disasters	

Course Outcomes

On the successful completion of the course, students will be able to

Co1. Understand the various types of disaster viz Hydrological, Coastal and Marine Disasters, Atmospheric Disasters, Geological, Mass Movement and Land Disasters, Wind	Understand
and Water Driven Disasters.	
Co2. Identify the potential deficiencies of existing buildings for Earthquake disaster and suggest suitable remedial measures.	Understand
Co3.Derive the guide lines for the precautionary measures and rehabilitation measures for Earthquake disaster.	Apply
Co4. Derive the protection measures against floods, cyclone, land slides	Apply
Co5. Understand the effects of disasters on built structures in India	Understand

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	М	-	-	L	-	-	-	-	-	-	-	-	-	-	-
CO2.	М	М	L	L	-	М	-	-	-	-	-	-	L	-	-
соз.	S	М	S	М	-	L	-	М	-	-	-	-	-	-	-
CO4.	S	М	S	-	L	-	-	-	-	-	-	-	-	-	-
CO5.	L	L	-	L	-	-	-	-	-	-	-	-	-	-	-

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I	INTRODUCTION	9 – hours						
Concept of di	saster; Different approaches; Concept of Risk; Levels of disasters; Disast	er phenomena and						
events (Globa	al, national and regional); Natural and man-made hazards							
UNIT – II	RISK ASSESSMENT AND VULNERABILITY ANALYSIS	9 – hours						
Response tim	e, frequency and forewarning levels of different hazards; Characteristics a	and damage potential						
of natural haz	ards; hazard assessment ;Dimensions of vulnerability factors; vulnerability	ty assessment;						
Vulnerability	and disaster risk; Vulnerabilities to flood and earthquake hazards							
UNIT – III	DISASTER MANAGEMENT MECHANISM	9 – hours						
Concepts of risk management and crisis management ; Disaster management cycle ;Response and Recovery								
; Developmer	nt, Prevention, Mitigation and Preparedness; Planning for relief							
UNIT – IV	DISASTER RESPONSE	9 – hours						
Mass media a	nd disaster management; Disaster Response Plan; Communication, Partic	cipation, and						
Activation of	Emergency Preparedness Plan; Logistics Management; Psychological Re	esponse; Trauma and						
Stress Manag	ement; Rumour and Panic Management ;Minimum Standards of Relief; N	Aanaging Relief;						
Funding.								
UNIT – V	DISASTER MANAGEMENT IN INDIA	9 – hours						
Strategies for	r disaster management planning; Steps for formulating a disaster risk redu	ction plan; Disaster						
management	Act and Policy in India; Organisational structure for disaster management	t in India;						
Preparation of state and district disaster management plans.								

TextBooks

1. Alexander, D. Natural Disasters, ULC press Ltd, London, 1993.

2. Carter, W. N. Disaster Management: A Disaster Management Handbook, Asian DevelopmentBank, Bangkok,1991.

3. Chakrabarty, U. K. Industrial Disaster Management and Emergency Response, Asian Books Pvt. Ltd., New Delhi2007.

Reference Books

1. AbarquezI. & MurshedZ. CommunityBasedDisasterRiskManagement:FieldPractitioner's

Handbook, ADPC, Bangkok, 2004.

2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London1990.

3. Goswami, S. C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.

4. Manual on Natural Disaster Management in India, NCDM, New Delhi, 2001.

- 5. Disaster Management in India, Ministry of Home Affairs, Government of India, New Delhi, 2011.
- 6. National Policy on Disaster Management, NDMA, New Delhi, 2009.
- 7. Disaster Management Act. (2005), Ministry of Home Affairs, Government of India, New Delhi, 2005.

Course Designers:

S.No.	Name of the Faculty	E-Mail ID
1.	M.Senthilkumar, Asst. Professor	senthilkumar@vmkvec.edu.in
2.	A.Fizoor Rahman, Asst. Professor	fizoorr@gmail.com
3.	Dr.D.S.Vijayan	vijayan@avit.ac.in

PREAM	EC22					CAD	٨				Categor	y L	Т	P C	Credit
PREAN						SCAD	A				EC(OE) 3	0	0	3
		ommuni	ication	tool to	analyze	the po	wer sys	tem dat	e in rea	l time ap	plications	s.			
PRERE	EQUIS	ITE – 1	NIL												
COUR	SE OB	JECTI	VES												
1	To un	derstan	d the fu	Indame	ntals of	SCAD	A.								
2	To and	alyze th	e SCA	DA Co	nponen	ts.									
3	To apprise the communication in SCADA. To learn the Concept of Monitoring and Control unit of SCADA.														
4	To lea	rn the (Concep	t of Mo	nitoring	g and C	ontrol u	nit of S	CADA	•					
5	To and	alyze th	e appli	cation o	of SCAI	DA in p	ower S	ystem.							
COUR	SE OU	тсом	IES												
On the s			•					e able	0						
				-	ents of S		Δ.						Eval		
					SCADA								Ana	•	
	-				A comm		on prot	ocol.					Ana	lyze	
CO4.]	Illustrat	the S	CADA	comm	inicatio	n.							App	ly	
	-			-	ontrol u									erstand	
CO6.]	Describ	e the ap	pplicati	ons of S	SCADA	in pov	ver syst	em .					Und	erstand	
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC O	UTCO	MES	1	1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	М	М							L	L	М
CO2	М				М	М							L		L
CO3	L	М			М	М		L		S		L	Μ	L	М
CO4	L	М			М	М				S		L	Μ	L	Μ
CO5	L				L	М						L	Μ	М	М
CO6	S	S			L	М						L	L	L	М
S- Stror	ng; M-N	Aedium	ı; L-Lov	w											

SYLLABUS

INTRODUCTION TOSCADA

Evolution of SCADA, SCADA definitions, SCADA Functional requirements and Components, SCADA Hierarchical concept, SCADA architecture, General features, SCADA Applications, Benefits.

SCADA SYSTEM COMPONENTS

Remote Terminal Unit (RTU), Interface units, Human- Machine Interface Units (HMI), Display Monitors/Data Logger Systems, Intelligent Electronic Devices (IED), Communication Network, SCADA Server, SCADA Control systems and Control panels.

SCADA COMMUNICATION

SCADA Communication requirements, Communication protocols: Past, Present and Future, Structure of a SCADA Communications Protocol, Comparison of various communication protocols, IEC61850 based communication architecture, Communication media like Fiber optic, PLCC etc. Interface provisions and communication extensions, synchronization with NCC, DCC.

SCADA MONITORING AND CONTROL

Online monitoring the event and alarm system, trends and reports, Blocking list, Event disturbance recording. Control function: Station control, bay control, breaker control and disconnector control.

SCADA APPLICATIONS IN POWER SYSTEM

Applications in Generation, Transmission and Distribution sector, Substation SCADA system Functional description, System specification, System selection such as Substation configuration, IEC61850 ring configuration, SAS cubicle concepts, gateway interoperability list, signal naming concept. System Installation, Testing and Commissioning

TEXT BOOKS:

- 1. Stuart A. Boyer: SCADA-Supervisory Control and Data Acquisition, Instrument Society of America Publications, USA, 2004
- 2. Gordon Clarke, Deon Reynders: Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems, Newnes Publications, Oxford,UK,2004.

3.

REFERENCES:

- 1. William T. Shaw, Cybersecurity for SCADA systems, PennWell Books, 2006
- 2. David Bailey, Edwin Wright, Practical SCADA for industry, Newnes, 2003
- **3.** Michael Wiebe, A guide to utility automation: AMR, SCADA, and IT systems for electric Power,PennWell 1999.
- 4. Dieter K. Hammer, Lonnie R.Welch, Dieter K. Hammer, "Engineering of Distributed Control Systems", Nova Science Publishers, USA, 1st Edition, 2001

COURSE DESIGNERS

coch				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	V.MANJULA	Assistant Professor	EEE/VMKVEC	manjula@vmkvec.edu.in
2	L.CHITRA	Associate Professor	EEE/AVIT	chitra@avit.ac.in

17EE	EC03	CO	MPUT	ER A				FELEC	TRICA	L	Category	' L	T F	C	redit
					API	PARA	TUS			EC	C(OE)	3	0 ()	3
To une	MBLE derstand ical Ma	l and fa		ze the	princij	ple, Co	oncepts	of Com	puter Ai	ided De	esign tec	hnolog	y for th	e design	of
PRER	EQUIS	ITE: N	IL												
COUI	RSE OI	BJECT	TIVES												
1 I	Learn th	e impo	ortance	of com	puter	aided o	lesign	method.							
2 U	Underst	and the	e basic e	electro	magne	tic fiel	d equa	tions and	d the pro	oblem f	ormulat	ion for	CAD aj	oplicatio	ns.
3 I	Become	famili	ar with	Finite	Eleme	ent Me	thod as	applica	ble for E	Electric	al Engin	eering.			
4 I	Know th	ne orga	nizatio	n of a t	ypical	CAD	packag	ge.							
5 /	Apply F	inite E	lement	Metho	d for t	he des	ign of o	different	Electric	cal app	aratus.				
COUI	RSE OU	JTCO	MES												
			-					will be a					1		
	Underst parame		e conce	pt of e	lectron	nagnet	ic ener	gy conv	ersion a	nd desi	gning		τ	Jndersta	nd
	1		e mathe	matica	l expre	essions	for di	fferent f	ield prob	olems.			ι	Jndersta	nd
CO3: 1	Implem	ent the	concep	ots of F	FEM to	desig	n the a	pparatus						Apply	
	-	-				cal app	paratus	through	the con	cepts o	of CAD			Analyze	e
CO5:]	Design	the ele	ctrical a	apparat	tus.									Create	
MAPI	PING V	VITH	PROG	RAMN	ME OI	UTCO	MES A	AND PR	ROGRA	MME	SPECI	FIC OU	UTCON	AES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	-	Μ	-	-	-	-	-	-	-	-	S	М	М
CO2	S	М	-	-	-	-	-	-	-	-	-	-	М	М	М
CO3	S	S	М	М	М	-	-	-	-	-	-	-	М	S	М
CO4	S	S	М	М	М	-	-	-	-	-	-	-	М	S	М
CO5	S	S	S	М	S	-	-	-	-	-	-		М	S	S
S- Stro	ong; M-	Mediu	m; L-L	OW	<u> </u>	<u> </u>	<u> </u>	I	I		I		<u> </u>	I	I

Syllabus

INTRODUCTION

Conventional design procedures – Limitations – Need for field analysis based design –Review of Basic principles of energy conversion – Development of Torque/Force.

MATHEMATICAL FORMULATION OF FIELD PROBLEMS

Electromagnetic Field Equations – Magnetic Vector/Scalar potential – Electrical vector / Scalar potential – Stored energy in Electric and Magnetic fields – Capacitance – Inductance- Laplace and Poisson's Equations – Energy functional.

PHILOSOPHY OF FEM

Mathematical models – Differential/Integral equations – Finite Difference method – Finite element method – Energy minimization – Variational method- 2D field problems – Discretisation – Shape functions – Stiffness matrix – Solution techniques.

CAD PACKAGES

Elements of a CAD System – Pre-processing – Modelling – Meshing – Material properties- Boundary Conditions – Setting up solution – Post processing.

DESIGN APPLICATIONS

Voltage Stress in Insulators – Capacitance calculation – Design of Solenoid Actuator – Inductance and force calculation – Torque calculation in Switched Reluctance Motor.

TEXT BOOKS

1. S.J Salon, 'Finite Element Analysis of Electrical Machines', Kluwer Academic Publishers, London, 1995.

2. Nicola Bianchi, 'Electrical Machine Analysis using Finite Elements', CRC Taylor& Francis, 2005.

REFERENCES

- 1. Joao Pedro, A. Bastos and Nelson Sadowski, 'Electromagnetic Modeling by Finite Element Methods', Marcell Dekker Inc.,2003.
- 2. P.P.Silvester and Ferrari, 'Finite Elements for Electrical Engineers', Cambridge University Press, 1983.
- 3. D.A.Lowther and P.P Silvester, 'Computer Aided Design in Magnetics', Springer Verlag, New York, 1986.
- 4. S.R.H.Hoole, 'Computer Aided Analysis and Design of Electromagnetic Devices', Elsevier, New York, 1989.

5. User Manuals of MAGNET, MAXWELL & ANSYSSoftwares.

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.G.Ramakrishnaprabu	Associate Professor	EEE / VMKVEC	ramakrishnaprabu@vmkvec.edu.in
2	Mr.S.Prakash	Assistant	EEE/AVIT	sprakash@avit.ac.in

COURSE DESIGNERS

17EEEC21 NON CONVENT		Category	L	Т	Р	Credit
	NON CONVENTIONAL ENERGY SOURCES	EC(OE)	3	0	0	3
DDDAMDID						

PREAMBLE

Non Conventional sources of energy are generally renewable sources of energy. This type of energy sources include anything, which provides power that can be replenished with increasing demand for energy and with fast depleting conventional sources of energy such as coal, petroleum, "natural gas etc. The non- conventional sources of energy such as energy from sun, wind, biomass, tidal energy, geo thermal energy and even energy from waste material are gaining importance. This energy is abundant, renewable, pollution free and eco-friendly. It can also be more conveniently supplied to urban, rural and even remote areas. Thus, it is also capable of solving the twin problems of energy supply in a decentralized manner and helping in sustaining cleaner environment. It concerned with development of the national grid system will focus on those resources that have established themselves commercially and are cost effective for on gridapplications

PREREQUISITE

NIL

COURS	COURSE OBJECTIVES							
1	To impart the knowledge of basics of different non conventional types of power plants	f power generation &						
	To understand the need and role of Non-Conventional Energy sources.							
2	To learn economical and environmental merits of solar energy for variety applications.							
3	To learn modern wind turbine control & monitoring.							
4	To learn various power converters in the field of renewable energy technologies.							
5	To study and analyse different types of Power converters for Renewable energy conversion							
COURS	E OUTCOMES							
On the su	accessful completion of the course, students will be able to							
CO1	Identify the different non conventional sources and the power generation techniques to generate electrical energy.	Understand						
CO2	Explore the Solar Radiation, different Methods of Solar Energy Storage and itsApplications.Analyse							
CO3	FamiliarizetheWinds energyas alternate form of energy and to know how it can betapped Understand							

CO4	Explore the Geothermal Energy Resources and its methods.	Understand						
CO5	Identify the Bio mass and Bio gas resources and its tapping technique	Analyze						
CO6	Investigate the Tidal, Wave and OTEC Energy, Concepts of Thermo- Electric Generators and MHD Generators	Analyse						
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES								

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	М	М	-	L	L	-	L	-	-	М	L	-	-
CO2		L		L	М		S	-	М	L	М	S	S	S	М
CO3	-	М	М	S	L	М	L	-	-	L	S	-	S	S	-
CO4	М	L	-	-	-	S	-	S	S	L	М	S	М	L	S
CO5	-	М	L	М	L	L	М	L	S	М	S	L	-	-	S
CO6	L	-	-	-	-	-	М	-	S	S	_	М	L	М	S
S- Stron	S- Strong: M-Medium: L-Low														

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Statistics on conventional energy sources, Classification of Energy Resources, Definition Concepts of NCES, Limitations of RES, Criteria for assessing the potential of NCES. - Solar, Wind, Geothermal, Bio-mass, Ocean Energy Sources, comparison of these energy sources

SOLAR ENERGY CONCEPT

Introduction to Solar Energy - Radiation and its measurement, Solar Energy conversion and its types - Introduction to Solar Energy Collectors and Storage, Applications of Solar Energy: Solar Thermal Electric Conversion Systems, Solar Electric power Generation, Solar Photo-Voltaic, Solar Cell Principle, Semiconductor Junctions, Conversion efficiency and power output, Basic Photo Voltaic System for Power Generation, Stand-alone, Grid connected solar powersatellite

WIND ENERGY CONCEPT

Introduction - Basic Principles of Wind energy conversion-The nature of wind- The power in the wind (No derivations) - Forces on the Blades (No derivations)-Site Selection considerations-Basic components of a wind energy conversion system (WECS)-Advantages & Limitations of WECS-Wind turbines (Wind mill) - Horizontal Axis wind mill-Vertical Axis wind mill-performance of wind mills-Environmental aspects - Determination of torque coefficient, Induction typegenerators

GEOTHERMAL AND BIOMASS ENERGY

Geothermal Sources - Hydro thermal Sources - a. Vapor dominated systems b. Liquid dominated systems -Prime movers for geothermal energy conversion - Biomass Introduction - Biomass conversion techniques-Biogas Generation-Factors affecting biogas Generation-Types of biogas plants- Advantages and disadvantages of biogas plants-urban waste to energy conversion - MSW incinerationplant.

TIDAL AND OTEC ENERGY

Tidal Energy-Basic Principles of Tidal Power-Components of Tidal Power Plants- Schematic Layout of Tidal Power house-Advantages & Limitations of Tidal, Wave, OTEC energy - Difference between tidal and wave power generation, OTEC power plants, Design of 5 Mw OTEC pro-commercial plant, Economics of OTEC, Environmental impacts of OTEC.

TEXT BOOK

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2. K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.
- Non Conventional Energy Resources, Shobh Nath. Singh, Pearson Education India, 2016, e ISBN : 978933255906 -6

REFERENCES

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi,2004
- 2. Wakil MM, Power Plant Technology, Mc Graw Hill Book Co, New Delhi, 2004.
- 3. Non Conventional Energy Sources.Rai.

cochoi												
S.No.	Name of the Faculty	Designation	Department	e-Mail ID								
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in								

171/1	EPI04		NON	J-DES'	TRUG	CTIV	E	Cat	egory	L		Т	Р	Cre	edit	
1/1011	2F104			TES	TING	r F		EC(C	E)	3		0	0		3	
their in	ly and dustri	al appl			ious N	Ion De	estruc	tive E	valua	tion an	d Testi	ng meth	nods, th	neory ar	nd	
Prere q NIL	uisite															
Course	e Obje	ective														
1 Т	To exp	ose to	the co	ncept o	of over	rview	of NI	TC								
2 ¹	To fam	iliariz	e with	the app	olicati	ons of	f diffe	erentia	l equa	tions,	surface	NDE N	/lethod	S		
3 7	To und	erstan	d the c	oncept	of the	ermog	raphy	and I	Eddy o	current	testing					
4 T	To und	erstan	d the c	oncept	of ult	rason	ic test	ting ar	nd aco	ustic e	missio	1				
5 T	To und	erstan	d the c	oncept	of Ra	diogr	aphy	(RT)								
Course	e Outo	comes	On th	ne succ	cessfu	l com	pletic	on of t	he co	urse, s	tudent	s will b	e able	to		
CO1.	Expla	in the	conce	pt of o	vervie	w of l	NDT							Under	stand	
CO2.	To fa Meth		ize wit	h the a	pplica	ations	of dif	ferent	ial eq	uations	, surfa	ce NDE		Under	stand	
CO3.	Expe	riment	with t	he con	cept o	f ther	nogra	aphy a	nd Ed	ldy cur	rent tes	ting		Ap	Apply	
CO4.	Expe	riment	with t	he con	cept o	of ultra	asonic	e testir	ng and	lacous	tic emi	ssion		Ap	ply	
CO5.	Expe	riment	with t	he con	cept o	of Rad	iogra	phy (F	RT)					Apply		
Mappi	ng wi	th Pro	gramı	ne Ou	tcome	es and	l Prog	gramı	ne Sp	ecific	Outcor	nes				
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S		L	М									L			
CO2	S	М	М	М	L								L			
CO3	S	L	М	М	М								L			
CO4	S		S	S	М								L			
CO5	S	М	L	М									L			
S- Stror	ng; M-N	Aedium	ı; L-Lo	w	1	1	<u> </u>	1	1		<u> </u>	1	1		1	
SYLL	0,															
OVER			NDT													

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterization. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT., Visual inspection – Unaided and aided

SURFACE NDE METHODS

Liquid Penetrant Testing – Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

THERMOGRAPHY AND EDDY CURRENT TESTING

Thermography- Principles, Contact and non contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation – infrared radiation and infrared detectors, Instrumentations and methods, applications.Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Typesof

arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique –Principle, AE parameters, Applications

RADIOGRAPHY (RT)

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, law, characteristics of films – graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic

equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

Text Books

1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa PublishingHouse.

2.Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New AgeInternational Publishers.

Reference Books

1. ASM Metals Handbook,"Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.

2. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey

3. Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, NewYork.

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id		
1	S.ASHOKKUMAR	Asst.Professor G-II	Mech / Avit	ashokkumar@avit.ac.in		

17N	IESE17	, M	ODER			ACTUI	RING	Cate	gory	L		Т	Р	Cre	edit
				ME	THOI	DS		EC	(OE)	3		0	0		3
pro	s course	ne stuc					ncedmai owledge							for mal aspects	ting
Prere	quisite -	- NIL													
Cours	e Objec	tive													
1	To disc	uss the	basic	conce	ots of v	various	unconve	entiona	l mach	ining pı	ocesses	5			
2	To Den	onstra	te the	Mecha	nical e	energy	based ur	nconve	ntional	machin	ing pro	cesses.			
3	To Den	onstra	te the	Electri	cal en	ergy ba	sed unco	onventi	onal m	nachinin	g proce	sses.			
4	To Den	onstra	te the	Chemi	cal &	Electro	-Chemic	cal ener	rgy bas	sed unco	onventio	onal mao	chining j	processe	es.
5	To Den	onstra	te the	Therm	al ener	rgy bas	ed unco	nventic	onal ma	chining	proces	ses.			
Cours	e Outco	mes:	On the	e succ	essful	comple	etion of 1	the cou	ırse, st	udents	will be	able to			
CO1.		uss th esses	e basi	c cond	cepts o	of vario	ous unc	onven	tional	machir	ing	l	Jndersta	ind	
CO2.	-	ain th esses	e Mec	hanic	al ene	rgy ba	sed unc	onven	tional	machin	ing	I	Apply		
CO3.		trate t esses	he Ele	ectrica	l ener	gy bas	ed unco	onvent	ional r	nachini	ng	I	Apply		
CO4.	-					ectro-C process	Themica Ses	l ener	gy bas	ed		ŀ	Apply		
CO5.		trate t esses	he Th	ermal	energ	y base	d uncor	ventio	onal m	achinir	ıg	ŀ	Apply		
Mapp	ing witl	n Prog	gramm	e Out	comes	and P	rogram	me Spo	ecific (Outcom	es				
СО	PO1	РО	РО	РО	РО	PO	PO7	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO
0	FUI	2	3	4	5	6	10/	8	9	0	1	2	1	2	3
CO1	S	-	-	-	L	-	-	-	-	-	М	-	L		
CO2	S	-	-	М	М	-	-	-	-	-	М	-	L		
CO3	S	-	-	Μ	М	-	-	-	-	-	М	-	L		
CO4	S	-	-	М	М	-	-	-	-	-	М	-	L		
CO5	S	-	-	М	М	-	-	-	-	-	М	-	L		
S- Str	ong; M	Medi	um; L	-Low	I	ı I		1	1	1	1	I	1	1	I

SYLLABUS

INTRODUCTION

Unconventional machining Process – Need – classification – Brief overview–merits –demerits– Applications

MECHANICAL ENERGY BASED PROCESSES

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. Working Principles & Applications – equipment used – process parameters – MRR -Variation in techniques used.

ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining - working principle and applications – equipments - process parameters - surface finish and MRR- Power and control circuits–Wire cut EDM – working principle and Applications.

CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical machining and Electro-Chemical Machining- Electro Chemical Grinding and Electro chemical Honing-working principle and applications-Process Parameters -Surface finish and MRR -Etchants-Maskants

THERMAL ENERGY BASED PROCESSES

Laser Beam Machining and drilling, Plasma Arc Machining and Electron Beam Machining Working principles & Applications – Equipment –Types - Beam control techniques. Micromachining and Nanofabrication Techniques

Text Books

1	Vijay.K. Jain "Ad	lvanced Machining	Processes" Allied Pu	blishers Pvt. Ltd.							
2	P.K.Mishra, "No: Books: Series.	n Conventional Ma	chining " The Insti	tution of Engineers (India) Text							
Refere	Reference Books										
1	Benedict. G.F. "Nontraditional Manufacturing Processes" Marcel Dekker Inc., NewYork										
2	Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi.										
3	Paul De Garmo, J. Manufacturing"	T.Black, and Ronal	ld.A.Kohser, "Materi	al and Processes in							
Course	e Designers										
S.No	Faculty Name	Designation	Department/Name of the College	Email id							
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in							
2	M SARAVANAN										

17ECCC07	MICROCONTROLLERS &	Category	L	Т	Р	Credit
	ITS APPLICATIONS	EC(OE)	3	0	0	3

PREAMBLE

Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development in VLSI technology, microcontrollers evolve which function similar to microprocessors but they have most of the peripherals built on-chip. This course makes the students to be familiar with the architecture and programming Microcontrollers. This course also introduces the architecture and hardware features of PIC 16E877 and ABM7 (LPC2148).

Microcontrollers. This course also introduces the architecture and hardware features of PIC 16F877 and ARM7 (LPC2148) microcontrollers.

PREREQUISITE – NIL

COUR	SE OB	JECTI	VES												
1	To lea	arn the c	concepts	s of mic	croproc	essors a	and kno	owledge	e of inte	erfacing	devices.				
2	To stu	udy the	Archite	cture of	8051 1	nicroco	ontrolle	er							
3	To dev	velop sk	till in si	mple pr	ogram	writing	of mic	crocontr	oller						
4	To stu	dy the i	nterfaci	ng and	applica	tions o	f micro	control	ler						
5	To stu	dy the a	dvance	d micro	control	llers.									
COUR	SE OU	тсом	IES												
On the	success	ful com	pletion	of the o	course,	student	s will l	be able	to						
CO1. E	Explain	the conc	cept of r	nicropr	ocessoi	and in	terfaci	ng devi	ces.				Und	lerstand	
CO2. E	Explain	the arch	itecture	and fur	nction of	of 8051	micro	controll	er				App	oly	
CO3. D	Design a	nd impl	lement p	orogran	ns on 80	051 Mi	crocont	troller					Ana	lyze	
CO4. D	Design a	nd impl	lement a	applicat	ions us	ing 805	51 Micı	cocontro	oller				Ana	lyze	
CO5. II	llustrate	various	s applica	ations u	ising ad	lvanced	l Micro	control	lers.				Ana	lyze	
MAPP	ING W	'ITH PI	ROGRA	AMME	OUT	COME	S ANE) PRO(GRAM	ME SPF	CIFIC	OUTCO	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	-	М	-	-	-	-	-	-	М	S	М	-
CO2	S	S	S	-	М	-	-	-	-	-	-	Μ	-	-	-
CO3	S	М	М	-	М	М	-	-	-	-	-	Μ	-	-	-
CO4	S	S	М	-	М	М	-	-	-	-	-	Μ	М	-	-
CO5	S	М	S	-	М	М	-	-	-	-	-	Μ	М	Μ	М
S- Stro	ng; M-N	Medium	; L-Lov	V											

SYLLABUS

INTEL 8086 MICROPROCESSOR & I/O INTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization – Signal Description of 8086 - Addressing modes – Data Transfer Instruction – Arithmetic Instruction - Branching Instruction - Program Transfer Instruction – simple programs- Programmable Peripheral Interface 8255 – Programmable Communication Interface 8251 USART – Programmable Interrupt Controller 8259A – Direct Memory Access Controller 8257- Programmable Interval Timer 8253 – Keyboard/Display Controller8279.

INTEL 8051MICROCONTROLLER

Introduction to 8 bit microcontroller – architecture of 8051- Signal descriptions of 8051- Role of PC and DPTR- Flags and PSW- CPU registers- Internal RAM & ROM- Special Function Register-Counter & Timers- SerialCommunication.

ASSEMBLY LANGUAGE PROGRAM OF INTEL 8051

Interrupt- Addressing Mode- Data Transfer Instruction- Arithmetic Instruction- Logical Instruction- Jump Loop & Call Instruction- I/O Port Programming.

INTERFACING AND APPLICATION OF INTEL 8051

LCD Interfacing - A/D and D/A Interfacing- Sensor Interfacing- Relays and Optoisolators- Stepper Motor Interfacing- DC MotorInterfacing.

ADVANCED MICROCONTROLLERS

PIC 16F877 microcontroller – Architecture On chip ADC, $I^2C - SPI - Watchdog timer - ARM7$ (LPC2148) microcontroller – Architecture and applications.

TEXTBOOKS:

- 1. Muhammad Ali Mazidi and Janica Gilli Mazidi, The 8051 microcontroller and embedded systems, Pearson Education, 5th Indian reprint,2003.
- 2 Frank D. Petruzella. "Programmable Logic Controllers", McGraw–Hill Book, Company, 1989

REFERENCE BOOKS:

- 1. B.P. Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. Embedded Controller Hand book, Intel Corporation, USA.
- 3. Microcontroller Hand Book, INTEL, 1984.
- 4. Ajay V.Deshmukh, "Microcontrollers- Theory and applications", Tata McGraw-Hill, publisher, 2005.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.S.Selvam	Assistant Professor	ECE	selvam@avit.ac.in
2	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
3	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in

17M	BHS02	2]	FINAN	NCE A	ND A	CCOU	JNTIN	G	Categ	ory	L	Т	Р	Credit
1/101	011002	_			FOR	ENGI	NEER	S		EC(OE	L)	3	0	0	3
PREAMB	LE: E	ngineer	s ar	e in a p	osition	n to do	Decisi	on Mal	king di	uring ev	ery activ	vity in t	he indu	stry. Tl	ne activities
ranging fro	om Ope	eration	to N	Non-Op	peratio	n durin	ig the i	routine	functi	ons of t	he orgar	nization	. Espec	cially, H	Finance and
Accounting	g also l	become	s th	e part o	of resp	onsibil	ity of e	every e	nginee	er to do o	lata ana	lysis ac	tivities	His in	terpretation
through da	ita ana	lysis a	nd r	eportin	ıg in e	very tr	ansact	ion hel	ps the	organiz	zation to	o do de	cision	making	to run the
organizatio	on effe	ctively	and	efficie	ntly. F	inance	and A	ccount	ing Pr	actices e	enable th	ne engir	neers to	handle	;
the resourc	es to d	lo cost	and	Financ	ial dec	sisions	with o	ptimun	n resou	urces for	r the bet	terment	of the	organiz	zation.
PREREQ	UISIT	'E: NIL	r												
COURSE	OBJE	CTIV	ES:												
1. To und	erstan	d the c	onc	epts a	nd cor	ventio	ons to	prepar	e Inco	ome Sta	itement	, and B	alance	Sheet	
2. To appl	ly the	variou	s m	ethods	to cla	im de	precia	tion ar	nd						
3. To prac	tice fu	undam	enta	al inve	stmen	t decis	ion th	rough	capita	al budge	eting te	chniqu	es.		
4. To anal	•			-	-				-		•			-	-
5. To estin	nate tl	he woi	kin	g capit	tal req	uirem	ents fo	or day-	to-da	y activi	ties and	handl	ing inv	entori	es with
economic	order	ing qu	anti	ties.											
COURSE															
After succe		-													
CO1: Und	erstan	d the i	mpo	ortance	e of re	cordin	ig, boo	ok keej	ping a	nd repo	orting of	f the	Ur	ndersta	nd
business t	ransac	ction.													
CO2: Ident	tify and	d Appl	y su	itable r	nethod	l for ch	arging	deprec	iation	on fixe	d assets.		Ap	oply	
CO3: Anal	yse the	e vario	ıs m	nethods	of cap	oital bu	dgetin	g techn	iques	for inve	stment c	lecision	ı. Ap	oply	
CO4: Justi	fy the	scope	of	cost-v	olume	-profit	analy	vsis, sta	andaro	d costin	g, and 1	nargin	al Ar	nalyse	
costing te	chniqu	ues for	dec	ision	makin	g.									
CO5: Estir	nation	of wor	king	g capita	l requi	remen	ts of th	e orgai	nizatio	n.			Ev	aluate	
MAPPIN	G WI	TH P	RO	GRAN	MME	OUT	COM	ES AN	ID PH	ROGRA	AMME	SPEC	CIFIC	OUT	COMES
Cos P	O1 P	PO2 P	D3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-]	Μ	L	S	М	-	S	-	М	М	L	М	L	М
CO2	L	-	-	L	М	-	L	L	-	-	L	М	L	L	-
CO3	-	M	-	М	L	-	-	L	S	М	-	L	-	L	М
CO4	L	L	-	S	-	-	L	-	-	L	М	L	М	L	М
CO5	L	-	Ĺ	S	L	-	-	М	М	L	-	L	М	M	-
S- Strong	; M-N	Aediu	n; l	L-Low	7			<u> </u>		<u> </u>	<u> </u>	1		1	

SYLLABUS:

Introduction: Business Environment – Forms of business – Book Keeping and Accounting – Accounting Concepts and Conventions – Journal – Subsidiary books - Ledger – Trial Balance – Final Accounts

Deprecation: Meaning - Causes - Methods of Calculating Depreciation: Straight Line Method,

Diminishing Balance Method and Annuity Method.

Capital Budgeting Decisions: Meaning – Nature & Importance of Investment Decisions – Types -Evaluation Techniques – Non-Discounting Cash Flow Techniques: Pay Back Period – Accounting Rate of Return – Discounting Cash Flow Techniques: NPV – IRR - ProfitabilityIndex.

Costing Accounting: Concepts - Elements of Cost - Preparation of Cost Sheet - Types of Costs – Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

Working Capital Management: – Types of Working Capital – Operating Cycle – Determinants of Working Capital - Receivables Management –ACP, Aging schedule –Inventory Management – Need for holding inventories – Objectives – Inventory Management Techniques: EOQ & Reorder point – ABC Analysis - Cash Management – Motives for holding cash.

Text Book

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media,2005.
- 2. Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting",PHI Learning Pvt., Ltd.2007.

Reference Book

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- 1. Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management

Accounting", Mc-Graw-Hill Education, 2017

;	S.No	Name of the Faculty	Designation	Department	Mail ID
	1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in
	2	Dr. Rajeshkumar	Assistat Professor	Management Studies	<u>Rajesh.mba@avit.ac.in</u>

COURSE DESIGNERS:

17MBI	HS09	IN					ERTY				Categor	y L	Т	Р	Credit
			ALTI	ERNA	TE DI	ISPUT	E RE	SOLU	TION	ſ	EC(OF	E) 3	0	0	3
PREAM	MBLI	E: IPF	R & Al	DR										<u>.</u>	
															opment.
															tion and
															product
															ps to get
											utions t	o both t	heparti	es	
with me				er way	and le	ess exp	pensive	e throu	gh arb	itrator.					
PRERI															
COUR															
											g proced				
2. To de	escrib	e the v	various	s proce	dure f	or gett	ing gra	nts of	patent	, traden	nark and	l trade s	secrets.		
3. To a	pply v	arious	legal	aspect	s in pa	tent ov	wnersh	ip and	transf	er.					
4. To in	mplem	ent th	e best	practic	ces and	laws	relatin	g to th	e Intel	lectual	property	/ rights.			
					ADR n	nechan	ism in	the tee	chnolo	gical ad	lvancem	ent con	texts.		
COUR															
After su			-												
CO1: U						1			1	1 0	0				erstand
CO2: E			vrocedu lia and				t of to	apply	New I	PR deve	elopmen	it and re	elated	Und	erstand
CO3: S							patent	owner	ship w	ith refe	rence to)		App	ly
			Patent				L		1					11	5
CO4: A	Analys	e the p	oresent	syster	n of P	atent A	Act in I	ndia a	nd cha	nges ali	igned w	ith		Ana	lyse
iı	nterna	tional	standa	urds.						C	0				•
CO5: C	Criticis	e the	presen	t dispu	te med	chanisr	n and I	how A	DR su	pports a	and solu	tion to		Eva	luate
b	ousines	ss issu	es.	_											
MAI	PPIN	G WI	ГН PF	ROGR	AMM	E OU	TCON	AES A	ND P	ROGR	AMME	SPEC	IFIC (OUTCO	MES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	М	-	-	S	L	М	L	М	_	L	-	-	-
CO2	-	-	М	L	М	М	S	L	М	L	L	L	-	-	М
	-	-	М	М	-	L	М	-	М	L	L	М	L	M	-
CO3						1	1					1	1	1	
CO3 CO4	М	-	-	L	М	-	L	-	-	L	L	М	-	-	L

S- Strong; M-Medium; L-Low

SYLLABUS:

UNIT – I: Introduction To IPRs

Basic concepts of Intellectual Property- Patents Copyrights, Geographic Indicators, History of IPRs- the way from WTO to WIPO- TRIPS, Nature of Intellectual Property, Industrial Property, Technological Research, Inventions and Innovations - Defining Intellectual Property and Patents, Patent Searches and Application.

UNIT - II: New Developments in IPR

Procedure for grant of Patents, TM, GIs, Trade Secrets, Patenting under PCT, Administration of Patent system in India, Patenting in foreign countries - International Treaties and conventions on IPRs, The TRIPs Agreement.

UNIT – III: Patent Ownership and Transfer

Defining Intellectual Property and Patents, Patent Searches and Application, Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

UNIT – IV: Legislation of IPRs

The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical

Indication Act, Bayh- Dole Act and, IPR strength in India - Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

UNIT – V: Alternate Dispute Resolution

Alternate Dispute Resolution and Arbitration – ADR Initiatives - Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration - Effective Mechanism for BusinessIssues.

TEXTBOOK:

1. Deborah E. Bouchoux, Intellectual Property Rights, Delmar, Cengage Learning, 2005.

REFERENCES:

- 1. V. Sople Vinod, Managing Intellectual Property by (Prentice hall of India Pvt.Ltd),2006.
- 2. A. Primer, R. Anita Rao and Bhanoji Rao, Intellectual Property Rights, Lastain Book company. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2006.
- 3. Tejaswini Apte, A single guide to Intellectual property rights, Biodiversity and Traditionalknowledge.
- 4. WIPO Intellectual Property Handbook.
- 5. Intellectual Property rights and copyrights, Ess EssPublications.

COUR	SE DESIGNERS:				
S.No	Name of the Faculty	Designation	Department	mail id	
1	Dr. G. Palaniappan	Associate Professor	Management Studies	palaniappan@vmkvec.edu.in	
2	Mr. C. M. Muthukrishna	Assistant Professor	Management Studies	Muthukrishna.mba@avit.ac.in	

17ATEC14	COMPUTER CONTROLLED VEHICLE	Category	L	Т	Р	С
ITAILCI4	SYSTEMS	EC(OE)	3	0	0	3

Preamble

This course introduces the role of sensors and actuators for controlling the engine, drive line. It also provide Prerequisite

N TTT

NIL	014	4•													_
Course	<u> </u>		<u> </u>	A (C	1 • 1									
				Autono				1 1	1 1		610	•			
								ed and			of IC e	ngine			
			1				2	m of A		ile					
				1			1	on syste	em						
			t the sr	nart saf	ety dev	ices of	Auton	nobile							_
Course			1 .1	6.1.1		.1 .	1		11 .						
After Su	ccessfi	ul comp	pletion	of this	course,	the stu	idents v	will be a	able to:					-	
CO1.	Sum	marize	sensor	s and a	ctuator	s used i	in vehi	cle cont	rol syst	tem				Unde	erstand
CO2.	Ider	ntify Co	ontrol o	of fuel,	Ignition	ı , spee	d and l	knock ii	n IC en	gine				Ap	oply
CO3.	Mak	e use o	of Drive	e line sy	stem, S	Steering	g and s	uspensi	on syst	ems				Ap	oply
CO4.	Exai	nine in	telliger	nt trans	oortatic	on syste	em	-							alyze
CO5.	Ana	lyze the	e smart	safety	Device	s used	in Auto	omobile	S					Ana	alyze
		Ν	Iappin	g with]	Progra	mme (Dutcon	nes and	l Progr	amme	Specifi	ic Outco	mes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	Μ	Μ				Μ				М	М		
CO2	S	Μ	Μ	Μ			Μ	Μ	Μ			М	М		
CO3	S	S	S	Μ			М	М	Μ			М	М		
CO4	S	S	S	М			М	М	М			М	М		
CO5	S	S	S	М			Μ	Μ	М			М	М		
- Strong	g; M-N	/ledium	n; L-Lo	W						-					

Syllabus

INTRODUCTION

Understanding autonomy – Review of the role of control in autonomy (speed control, suspension control & integrated vehicle dynamics) - Role of sensors and actuators. Examples of autonomy cruise control

ENGINE CONTROL SYSTEM

Fuel control-Ignition control in SI engines- Lambda control- idle speed control- Knock control- cylinder balancing **DRIVE LINE CONTROL SYSTEM**

Speed control – gear shifting control – traction /braking- steering- suspension – vehicle handling and ride characteristics of road vehicles- adaptive cruise control

INTELLIGENT TRANSPORTATION SYSTEM

Overview – control architecture – collision avoidance, pitch, yaw, bounce control – traffic routing system-automated high way systems- lane warning system- driver information system- data

SAFETY IMPACTING DEVICES

Vision enhancement- driver conditioning warming- anti-lock braking systems – route guidance and navigation systems – in-vehicle computing – commercial vehicle diagnostic/ prognostics – hybrid/ electric and future cars- case study.

TEXT BOOK:

1. Automotive control systems, U.Kienckeand L. Nielson, SAE and springer-Verlag, 2000

REFERENCES:

- 1. Crouse, W.H. & Anglin, D.L., Automotive Mechanics, Intl. Student edition, TMH, NewDelhi.
- 2. Artamonov, M.D., Harionov, V.A. & Morin, M.M. Motor Vehicle, Mir Publishers, Moscow1978.,
- 3. Heitner, J., Automotive Mechanics, CBS Publishers, New Delhi1987.
- 4. Stockel Martin W and Stocker Martin T., Auto Mechanics Fundamentals, GoodheartWilcox,

CourseDesigners:

Cours				
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17CVS	E55		REM	IOTE	SEN	SINC	5 ANI	D GIS	5	Cate	gory	L	Т	Р	Cre dit
			FC	OREN AF	VIR PPLIC			AL		EC(OE)	3	0	0	3
PREAM	MBLE	E										•			
	This	Cours	se helj	ps in g	gainin	g kno	wledg	ge abo	out rei	note se	ensing a	and GIS	for		
enviro	nmen	t appli	catio	1.											
PRERI NIL	EQUI	SITE													
COUR	SE O	BJEC	TIVE	ES											
	Be a	cquair	nted w	vith th	e con	cepts	of Re	mote	sensii	ng, EM	R inter	action	with En	vironm	ental
1	issue	es.													
2	Be fa	amilia	r with	remo	ote ser	nsing	platfo	rm sy	stems	, its sa	tellites	and ser	isors.		
3	Gain	know	ledge	e on d	ata pr	ocess	ing us	ing ir	nage p	process	ing sof	tware.			
4	Gain	know	ledge	e on G	IS an	d GIS	softv	vare.							
5	Be fa	amilia	r with	mon	itoring	g envi	ronm	ent us	sing re	emote s	ensing	and GI	S.		
COUR	SE O	UTCO	OMES	5											
On the	succes	ssful c	omple	etion	of the	cours	se, stu	dents	will t	e able	to				
CO1. D	Develo	p kno	wledg	ge on o	conce	pt of	remot	e sens	sing.			Uno	derstanc	1	
CO2. E	e awa	re of a	remot	e sens	ing p	latfor	ms an	d sen	sors.			Uno	derstanc	1	
CO3. I	lentify	y the s	teps i	n Ima	ge pro	ocessi	ng so	ftwar	e.			App	oly		
CO4. R	elate	the pr	oblem	ns in C	GIS so	ftwar	e.					App	oly		
CO5. D	Descrit	be the	envir	onme	ntal aj	oplica	tion u	sing	remote	e sensii	ng and				
GIS.					-	-		-			-	Ana	alyze		
MAPP	ING V	WITH	I PRC	OGRA	MM	E OU	TCO	MES	AND	PRO	GRAM	ME SI	PECIFI	C	
OUTC	OME	S													
COs	PO	PO	PO	PO	РО	РО	PO	РО	PO	PO1	PO1	PO1	PSO	PS	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	O2	3
CO1	S	L	L	L	-	-	-	_	-	-	-	-	L	L	L
CO2	S	L	М	L	М	-	-	-	-	-	-	-	L	-	L
CO3	S	М	М	L	М	М	-	-	-	-	-	-	L	-	М

CO4	S	S	Μ	L	-	-	-	-	-	-	-	-	М	М	S
C05	S	-	М	-	М	S							М	М	S

S- Strong; M-Medium; L-Low

SYLLABUS

PRINCIPLES OF ELECTRO MAGNETIC RADIATION: Concepts of Remote Sensing - Energy sources and radiation principles, Energy interactions in the atmosphere - Spectral reflectance of earth surface features. **REMOTE SENSING PLATFORMS:** Aerial Photographs, Photographic Systems - Visible, Infra Red and Microwave sensing - Active and passive sensors - Satellites and their sensors, Indian Space Program - Satellite dataproducts

DATA PROCESSING: Photogrammetry - Satellite data analysis - Visual Interpretation, Interpretation equipments - Digital Image Processing - Image rectification, enhancement, classification, data merging and biophysical modeling - Image Processing software.

GEOGRAPHICINFORMATIONSYSTEM : Introduction to GIS concepts - Data base structure - Data analysis - GISsoftware

REMOTE SENSING AND GIS APPLICATIONS: Management and monitoring of environment, conservation of resources, coastal zone management -Limitations.

TEXT BOOKS:

1. Lillesand, T.M. and Kiefer, R.W., Remote Sensing and Image Interpretation, John Wiley and Sons, New York, 2004.

REFERENCES:

1. Burrough, P.A. and McDonnell, R.A., Principles of Geographic Information Systems, Oxford University Press, New York, 2001.

2. Lintz, J. and Simonet, Remote Sensing of Environment, Addison Wesley Publishing Company, New Jersey, 1998.

COURSE DESIGNERS

S.No	Name of the	Designation	Name of the College	Mail ID
	Faculty			
1	C. Nivetha	Assistant	AVIT	nivethachandru92@gmail.com
		Professor		
2	Dr.S.P.Sangeetha	HoD -Civil	AVIT	sangeetha@avit.ac.in

Preamble

GeographicalInformationSystemistheapplicationofthegeologicsciencestoengineeringpracticeforthepurpose ofassuringthatthegeologicfactorsaffectingtheengineeringworksarerecognized and adequately provided for. Engineering geologic studies may be performedduringtheplanning and design. A civil engineer should be able to understand an engineering geologic report, and incorporate adequate measures into the design of engineering works.

Prerequisite

NIL

Course Objectives

1. To provide exposure to applications of GIS in various application domains through case studies

2. Students will learn about the use of zone mapping for water bodies .

3. Students will learn about the use of mapping techniques for Agriculture and Earth sciences

4. Students will also learn about the recent techniques used for GPS system

5. The student shall also be able to appreciate the importance of geological formation in causing earthquakes and landslides and literate the rural people

Course Outcomes

On the successful completion of the course, students will be able to

(CO1) Acquire the knowledge of the topographical formation, interior earth, gradational activities and GIS Technique and data INPUT	Understand
(CO2)) Understand the importance of advanced techniques involved in data Analysis and modelling	Understand
(CO3) Study the importance of Data Output And Error Analysis.	Analyse
(CO4) Understand the importance of Natural Resources And Wasteland Management using GIS	Understand
(CO5) Analysis of RS and GIS data and interpreting the data for modeling applications	Analyse

Mapping with Programme Outcomes and Programme SpecificOutcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	L	S	S	М	S	М	М	S	S	S	М	-	М
CO2.	S	М	М	L	L	М	М	L	L	L	L	М	L	L	М
СО3.	S	S	S	S	L	L	М	L	L	L	L	L	L	М	М
CO4.	S	S	S	М	М	S	S	L	L	L	М	М	L	М	L
CO5.	S	S	S	S	S	S	S	S	S	S	S	S	L	М	М

S- Strong; M-Medium; L-Low

Syllabus

UNIT - I	GIS TECHNIQUE AND DATA INPUT	9 - hours
MAP – Type	s of Maps – Development of GIS – Components of GIS – Hardware, softw	ware, organisation –
Types of data	a – Spatial and non-spatial data – Print, Line and Polygon – Vector and Ra	ster data – Database
structures – F	Files – Vector and Raster data structures.	
UNIT - II	DATA ANALYSIS AND MODELLING	9 - hours
Data Retrieva	al – Query – Simple Analysis – Spatial Analysis – Overlay – Vector Data	Analysis – Raster
Data Analysis	s – Modelling using GIS– Digital Elevation Model – Cost and path analys	is– Expert
Systems – Ar	tificial Intelligence – Integration with GIS	
UNIT - III	DATA OUTPUT AND ERROR ANALYSIS	9 - hours
Data Output	- Types - Devices used - Raster and Vector Display Devices - Printers -	Plotters – Photo
write Devices	s – Sources of Errors – Types of Errors – Elimination – Accuracies	
UNIT - IV	GIS APPLICATIONS IN RESOURCE MANAGEMENT	9 - hours
	olications – Natural Resources – Agriculture – Soil – Water Resources – V - Social Resources - Cadastral Records – LIS	Vasteland
UNIT - V	ADVANCED GIS APPLICATION	9 - hours
AM/FM - Ut	ility Network Management – Integration with Remote Sensing – Knowled	lge based
techniques -	Multicriteria Techniques – Introduction to Object Oriented Data baseMod	lel

TextBooks

- 1. Burrough P A, Principles of GIS for Land Resources Assessment, Oxford Publication, 2000
- 2. Michael N Demers, Fundamentals of Geographical Information Systems, Second Edition, John Wiley Publications, 2002

Reference Books

1. Paul A Longley, Michael F Goodchild etal, Geographical Information Systems Volume I and II, Second Edition, John Wiley Publications, 1999

Course Designers:

S.No.	Name of the Faculty	E-Mail ID
1	C.Kathirvel	geologykathir@gmail.com
2	SUDIP DAS	sudipdas@avit.ac.in

17CVS	SE02						WID			Categ	gory	L	Т	Р	Credit
			INI	FORM	MATI	ION S	SYST	EMS		EC(OE)	3	0	0	3
PREAM	MBLI	£								1		I			
	This	cours	e is d	esigne	ed to j	provid	de the	stude	ent wi	th a the	orough	unders	standing	g of bot	h the
role t	hat E	nterpr	ise R	esour	ce Pl	lannir	ng Sy	stems	s (ER	Ps) pl	ay in	an or	ganizati	ion and	ł the
challe	nging	task o	f man	aging	g the I	nforn	nation	Syste	ems (l	(S) func	ction.				
PRERI	EQUI	SITE													
	NIL	,													
COUR	SE O	BJEC	TIVE	ES											
1	To i	ntrodu	ice En	terpri	se res	ource	plan	ning							
2	To n	nake s	tuden	ts unc	lersta	nd the	e finar	ncial a	accou	nting					
3	Exp	lain ho	ow 'be	est bu	siness	prac	tices'	are ir	ncorpo	orated in	n an E	RP			
4	Exec	cute ar	n entir	e bus	iness	proce	ss cha	ain in	the a	reas of	sales, I	Procure	ement, l	Product	ion and
4	Acc	ountin	g												
5	To s	tudy a	bout 1	the M	ateria	ls req	uirem	nent p	lannir	ng, billi	ng & v	work ce	enters.		
COUR	SE O	UTCO	OMES	5											
On the	succes	ssful c	omple	etion	of the	cours	se, stu	Idents	will	be able	to				
Unders	tand													U	nderstand
CO2. H	Iow 'ł	best bu	isines	s prac	tices'	are in	ncorp	orated	d in ar	n ERP				U	nderstand
CO3. T				-			-				compa	any		U	nderstand
CO4. E					•	-		-			-	•	P syste	m A	pply
CO5. A	_			-	-				-	-				σ	
& work										1	1			A	pply
MAPP	ING	WITH	PRC	OGRA	MM	E OU	TCO	MES	5 ANI) PRO	GRAN	AME S	PECIE	FIC	
OUTC	OME	S													
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	
CO1	М	Μ	L						-						
CO2	Μ	М	L	L		М	L		Μ						
CO3	Μ	М	М			М	L		М		М				
CO4	Μ	М	Μ	Μ		Μ	Μ		Μ					L	L
CO5	L		М	L										М	М
S- Stro	ng; M	I-Med	lium;	L-Lo	W			I	1	11		1	I	I	1
SYLLA	U/		,												
INTRO			I: Ove	erviev	v - da	tabase	e appl	icatio	ons -B	usiness	functi	on vs t	ousiness	s proces	SS-
Introdu														-	
			-								D				

FINANCIAL ACCOUNTING: Financial Accounting basics – Balance sheet, Profit and Loss Statement- General Ledger, Chart of Accounts –Posting financial transaction-Controlling –Cost

centers and cost elements-Allocating Costs – Assessments and distributions.

BUSINESS PROCESSES: Sales and fulfillment cycle -Master Data and its role in ERP systems -Creating customer master data, material master data and pricing conditions -Implementing a Sales Cycle **PROCUREMENT PROCESSES:** Forecasting raw material requirements using sales information, production requirements, sales forecast-Raw Material procurement-Vendors and pricing conditions-Payment.

PLANNING AND CONTROL: MRP – Materials requirement planning-Independent and dependent materials requirements-Creating Production orders and schedules-Bill of Materials-Executing a Production process-Inventory and Goods movement-Routing and work centers.

TEXT BOOKS:

- 1. Enterprise Resource Planning, 3rd Edition, by *Bret Wagner and Ellen Monk*, ISBN: 9781423901792,2009
- 2. SAP R/3, Business Blueprint, 2nd Edition, by *Thomas A. Curran & Andrew Ladd*, Prentice Hall PTR, 2000, ISBN: 0-13-085340-2

REFERENCES:

- 1. Essentials of Business Processes and Information Systems, by *Simha R. Magal and Jeffrey Word*, ©2010, ISBN:978-0-470-23059-6
- 2. Integrated Business Processes with ERP Systems, Preliminary Edition, by *Simha R. Magal and Jeffrey Word*, ISBN:978-0-470-88424-9

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mr. Sudip Das	Asst. Prof	AVIT	sudipdas@avit.ac.in

17CVSE4	7	ICT BASED CITY AND	Category	L	Т	Р	Credit
170 (5124	/	INFRASTRUCTURE PLANNING	EC(OE)	3	0	0	3
PREAMBL Thi		se offers the various methods of changing scena	ario in the spat	ial order of	of cities a	nd regio	ons as
well as the	e emei	gence of virtual societies in the world social ne demand for paradigm shift in the spatial plann	networks amor	ig comm	unities act	ross the	
PREREQU NIL	ISITI	Ξ					
COURSE ()BJE	CTIVES					
1 To r	nake s	tudents aware and exposed to changing scenario	o of virtual soc	ieties in t	he world		
2 The	spatia	l order of cities like drinking water provision, tr	ansportation, s	anitation	facility et	,	
3 The	stude	nts will be in a position to understand the use an	d power of em	erging ne	w technol	logies	
4 Soci	ial net	works among communities across the city, coun	try and globe				
5 Par	adigm	shift in the spatial planning outlook and govern	ance edge.				
COURSE (OUTC	OMES					
On the succ	essful	completion of the course, students will be able t	0				
CO1. Studer	nts are	able to cope up with the application technology	7			I	Apply
CO2. Studen neighborhoo		derstand its impact on the infrastructure Planning city levels.	g and develop	nent at th	e house,	A	nalyze
CO3. Appra facility etc.,	ise the	e spatial order of cities like drinking water provis	sion, transport	ation, san	itation	A	nalyze
	-	eart cities and smart communities with the help of ss the city, country and globe	of Social netwo	orks amor	ng		Apply
CO5. Ability edge.	y to U	nderstand the Paradigm shift in the spatial plann	ing outlook an	d govern	ance	A	nalyze

MAPF	PING	WITH	PROG	GRAM	ME O	UTCO	MES .	AND F	PROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	М	М	S	М	М	-	S	L	-
CO2	-	L	-	-	М	М	М	-	-	L	-	-	S	М	М
CO3	-	-	L	L	L	-	L	М	М	М	М	М	-	М	М
CO4	М	М	-	L	-	L	-	L	L	L	-	М	-	L	L
CO5	-	L	-	М	М	-	-	L	-	L	-	-	М	М	М
S- Stro	ong; M	I-Medi	um; L	-Low											

PLANNING VS TECHNOLOGY: Tradition to modernity – Spatial planning and technology interface - Socioeconomic planning and technology interface – Planning cities and local technologies - Technological innovations and responsive city planning - Planning responsive technology Vs technology responsive planning.

CITIES-TECHNOLOGY-INFRASTRUCTURE: Transportation and technology, water, sanitation and technology, energy efficient technology for home, street, neighborhoods and city - Telecommunication, health and education – Security and safety for buildings and people in cities.

TECHNO CITIES: Digital cities, virtual cities, technology parks - Smart planning and infill development – Planning, design and communication system - Socio-economic and environmental Impact of techno cities..

GOVERNANCE: Role of law and technology, administration and organization, industry and corporate, communities and people in building smart cities and smart communities.

CASE STUDIES: Best practices in India and around the world.

TEXT BOOKS:

1. Brkovic, M. B., 'Planning in the Information Age: Opportunities and Challenges of e-Planning, CORP,2004 2. City Government of Naga, 'The Naga City Citizen Chartes- A Guide Book of City Government Services.2004 **REFERENCES:**

Elizabeth, S. Frans, V. 'IDENSITY: Planning Paradigms for the Information Communication Age', Isocarp Congress, 2001.

Intelligent Community forum, 'Innovation and Employment in the Intelligent Community", Intelligent Community forum, 2012

Komakech, D., 'Achieving More Intelligent Cities", Municipal Engineer, 2005.

COURSE DESIGNERS

S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Mrs.Subathra	AP Gr II	AVIT	subathra@avit.ac.in
2	Mr.Johnson Daniel	AP	AVIT	johnsondaniel@avit.ac.in

1	7EESE0.	3		AR			FELLI		E	Catego	ory	L	Т	Р	Credit
					TO PO	WER	SYSTE	CMS		EC(OE)		3	0	0	3
PREA	MBL														
	To Stu	dy abo	ut the A	Artificia	l Intelli	gence a	applicat	tion to I	Power S	ystems.					
PRER	EQUISI	TE-NI	L												
COUR	SE OBJ	ECTI	VES												
1	To Unc	lerstan	d abou	t the In	roducti	on of N	leural n	etwork	s.						
2	To Unc	derstan	d abou	t the Ap	oplication	on of N	eural ne	etworks	to Pow	ver System	n				
3	To stud	ly the i	ntrodu	ction to	fuzzy l	ogic.									
4	To und	er stan	d appli	cations	to pow	er syste	ems.								
5	To stud	ły gene	etic alg	orithm	and its a	applicat	tions to	power	systems	8.					
COUR	SE OUT	ГСОМ	ES												
On th	ne succes	sful co	mpleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1:D	escribe t	he Bas	ics of A	ANN-Pe	erceptro	on-Delta	a learni	ng rule	and Alg	gorithm				Und	erstand
CO2: F	Relate the	e applic	cation of	of neura	l netwo	rks to p	power s	ystem p	oroblem	s.				App	ly
CO3:A	nalysis tl	he vari	ous typ	bes of fu	uzzy log	gic and	their w	orking	proram	me for var	rious ap	plication	•	Ana	lyze
CO4: S	Select to a	develoj	p fuzzy	set the	ory for	various	s model	of pow	er syste	em contro	1			Eval	uate
CO5: I	Design the	e basic	idea g	enetic a	lgorith	m .								Crea	ite
MADD				A 3 43 43		CONT							MEG		
MAPP COS		PO2	PO3	AMMI PO4	PO5	PO6	PO7	PROC PO8	PO9	ME SPE PO10	PO11	PO12	MES PSO1	PSO2	PSO3
CO3	S S	M	S FOS	L FO4	-	M N	-	M M	F09	-	-	M	M	L	
$\frac{CO1}{CO2}$	S	M	<u> </u>		-	M	-	M	S	-	-	-	M	L	-
CO3	M	М	S	М	-	М	-	М	S	-	-	М	М	L	-
CO4	М	М	S	L	-	М	-	М	S	-	-	-	L	М	-
CO5	М	S	-	L	-	-	-	-	S	-	-	-	L	М	-
	ng; M-M					ODTC									
	DDUCTI							ronagat	ion $\Delta 1_{0}$	orithm-M	[u]tilave	r Feed fo	rward n	otwork_	
	ry models										annaye		л waru lle	JUWUIK-	
	ÍCATIO														

Application of Neural Networks to load forecasting, Contingency Analysis-VAR control, Economic Load Dispatch.

INTRODUCTION TO FUZZY LOGIC

Crispness-Vagueness-Fuzziness-Uncertainty-Fuzzy set theory Fuzzy sets-Fuzzy set operations-fuzzy measures-fuzzy relations-fuzzy function. Structure of fuzzy logic controller- fuzzification models-data base-rule base-inference engine defuzzification module.

APPLICATIONS TO POWER SYSTEMS

Decision making in Power system Control through fuzzy set theory-Use of fuzzy set models of LP in Power systems scheduling problems-Fuzzy logic based power system stabilizer.

GENETIC ALGORITHM AND ITS APPLICATIONS TO POWER SYSTEMS

Introduction – Simple Genetic Algorithm – Reproduction,. Crossover, Mutation, Advanced Operators in Genetic Search – Applications to voltage Control and Stability Studies.

TEXT BOOKS:

 Laurence Fausett, "Fundamentals of Neural Networks", Prentice Hall, Englewood Cliffs, N.J.,1992
 Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw Hill Inc., 2000.

REFERENCES

- 1. James.A.Freeman and B.M.Skapura "Neural Networks, Algorithms Applications and Programming techniques"-AddisonWesley,1990.
- 2. George Klir and Tina Folger, A., "Fuzzy sets, Uncertainty and Information", Prentice Hall of India Pvt.Ltd., 1993.
- 3. Zimmerman, H.J. "Fuzzy Set Theory and its Applications", Kluwer AcademicPublishers, 1994.
- 4. IEEE tutorial on "Application of Neural Network to Power Systems",1996
- 5. Loi Lei Lai, "Intelligent System Applications in Power Engineering", John Wiley and Sons Ltd., 1998
- 6. EthemAlpaydin, "Introduction to Machine learning (Adaptive Computation and Machine Learning series)', MIT Press, Second Edition, 2010.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.A.BALAMURUGAN	Associate Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in
2	Mr.S.PRAKASH	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in

262

17RN	ACC03			BIOSEN	ISORS	AND '	TRAN	SDUCE	CRS		Categor	y L	Т	Р	Credit
1, 11			L				▲ 4 1 1 1 1			j	EC(OE)	3	0	0	3
The course of th	or the d	etectior	n of an	analyte	. The r	elation	betwee	n senso	or conce	ge of the epts and e introdu	transduc biologica ced.	ers and l concep	biolog pts is l	ical con nighlig	nponents nted. The
PRER	EQUIS	ITE – I	NIL												
COUR	RSE OB	JECTI	VES												
1	To us	e the ba	sic con	cepts of	f transd	ucers, e	lectrod	es and i	its class	ification					
2	To dis	scuss th	e vario	us types	s of elec	ctrodes.									
3	To de	termine	the rec	cording	of biolo	ogical c	ompon	ents.							
4	To en	nploy th	e know	ledge i	n electr	ochemi	cal and	optical	biosen	sors.					
5	To ou	tline th	e variou	ıs biolo	gical co	ompone	nts usii	ng biose	ensors.						
COUR	RSE OU	TCOM	IES												
On the	success	ful con	npletior	of the	course,	studen	ts will l	be able	to						
CO1.	Describ	be the w	vorking	princip	les of t	ransduc	ers.						Unc	lerstan	1
CO2.	Explair	n the va	rious ty	pes of o	electroc	les.							Unc	lerstan	1
CO3.	Utilize	various	s FET s	ensors f	for reco	rding o	f biolog	gical co	mponer	nts.			App	oly	
CO4.	Disting	uish va	rious b	iosenso	rs like e	electroc	hemica	l and op	otical bi	osensors			Ana	lyze	
CO5.	Analyz	e the bi	ologica	l comp	onents	using bi	iosenso	rs in va	rious ap	oplication	ns.		Ana	lyze	
MAPF	PING W	ITH P	ROGR	AMMI	E OUT	COME	S ANE	PRO(GRAM	ME SPE	CIFIC C	DUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	М	L		М		М			L			М			
CO2	М	L		М		М			L			М			
CO3	S	М	L	S		S	М	М	М			М			
CO4	S	S	L	S		S	М	М	S			М	М	S	М
CO5	S	S	L	S		S	М	М	S			S	М	S	М
S- Stro	ong; M-N	Medium	n; L-Lo	W											

INTRODUCTION: General measurement system, Transducers and its classification, Resistance transducers, capacitive transducer, Inductive transducer.

TRANSDUCERS:

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

BIO POTENTIAL ELECTRODES:

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

BIOSENSORS:

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

APPLICATIONS OF BIOSENSORS:

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

TEXT BOOKS:

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

REFERENCES:

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indianreprint).
 Geddes and Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, John Wiley Publications,
- 2008.

COUR	COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in						
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran@avit.ac.in						
3	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in						

17BMEC06		API	PLIED						ZZY LO	OGIC	Category	y L	Т	P C	Credit
17.01	SYSTEMS IN MEDICINE			EC(OE	3)	0	0	3							
To und	PREAMBLE To understand about the basic concepts of Neural Networks and Fuzzy Logic and learn to design and use them for biomedical applications.														
PRER	PREREQUISITE – NIL														
COUR	COURSE OBJECTIVES														
1	To un	derstan	d the ba	asic con	cepts o	f artific	ial neu	al netw	orks.						
2	To stu	dy the	various	ANN N	Models.										
3	To familiarize about the Self organizing maps and competitive networks.														
4	To study the basic concepts of fuzzy Logic systems.														
5	To apply the concepts of ANN and Fuzzy Logic in Biomedical applications.														
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	e able t	to						
CO1. E	Explain	the basi	c conce	epts of a	artificia	l neural	networ	∶ks.					Unc	erstand	
CO2. I	Discuss	about b	asics of	the fuz	zy logi	с.							Unc	erstand	
CO5. A	Apply th	e conce	epts of A	ANN ar	nd Fuzz	y Logic	in Bio	medical	l applicat	tions.			App	ly	
CO4. I	llustrate	the art	ificial n	eural n	etwork	models							Ana	lyze	
CO3. S	ummar	ize Self	organi	zing ma	ps and	compet	titive ne	etworks	•				Eva	luate	
MAPP	'ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAMM	IE SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М					L						М	М	М	М
CO2	М				-	L						М	М	М	М
CO3	S		S	М		М		М	М			S	М	S	S
CO4	S	М	S	S	М	М		М	М			S	S	S	S
CO5	O5 S S S S M M S S S S S S								S						
S- Stro	ng; M-N	Medium	n; L-Lov	W					·						

ARTIFICIAL NEURAL NETWORKS - AN OVERVIEW

Neural Networks Basics-Biological Neural nets, Processing elements-Mc Culloh Pitts Model, Types of Learning, Network Parameters-Weights, Activation, Threshold Functions, Hebb Rule, Delta Rule, Perception learning Algorithm.

ARTIFICIAL NEURAL NETWORKS MODELS

Mapping, training of Feed forward networks-Perception, Mapping, training of Recurrent Networks-Hopfield Network, Radial Basis Function Network, Training of Feed Forward Back Propagation Network, Applications of BPN.

SELF ORGANIZING MAPS (SOM)

Self organizing maps-Pattern clustering, SOM-Topological Mapping, Kohonen's SOM, K-means clustering algorithm, competitive models – Min, Max Net, Adaptive Resonance Theory (ART) – Introduction, Network and Processing in ART, Associative memory model.

INTRODUCTION TO FUZZY LOGIC

Fuzzy logic-Basic concepts -Fuzzy Vs Crisp set, Linguistic variables, Membership functions, Fuzzy IF-THEN rules, Variable inference techniques, De-fuzzification techniques, Basic fuzzy inference algorithm.

NEURAL NETWORK AND FUZZY LOGIC APPLICATIONS IN MEDICINE

Neural Networks in Biomedical Applications, Cancer, Cardiovascular Applications, Medical Image Analysis using neural networks, Fuzzy Logic Applications, Fuzzy Logic Controller, Neuro fuzzy systems – Applications inmedicine.

TEXT BOOKS:

- 1. Mohamad H. Hassoun, **"Fundamentals of Artificial Neural Network"**, Cambridge, The MIT Press, 1st Edition, 1995.
- 2. Laurene Fausett, **"Fundamentals of Neural Networks: Architectures, Algorithms, and Applications"**, Pearson Education India, 3rd Edition,2008.

REFERENCES:

- 1. C.M.Bishop, "Pattern Recognition and Machine Learning", Springer-Verlag, 2006.
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", John Wiley and Sons, 2nd Edition, 1995.
- 3. B.Yegnanarayana, "Artificial Neural Networks", Prentice Hall of India, 3rd Edition2006.

COUR	COURSE DESIGNERS										
S.No.	Name of the Faculty	Designation	Department	Mail ID							
1	Dr.D.Vinodkumar	Professor	BME	vinodkumar@vmkvec.edu.in							
2	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in							
3	Ms.R.Sandhiya	Assistant Professor (Gr-I)	BME	sandhiya@avit.ac.in							

COURSE DESIGNERS

17BMSE17			g	DAIN	COM	DITTE	d int	TDEA	CE		Catego	ry L	Т	P C	Credit
17DN	ISE17 BRAIN COMPUTER INTERFACE			EC(OE	3	0	0	3							
PREAMBLE Brain-computer interface (BCI) is a collaboration between a brain and a device that enables signals from the brain to direct some external activity, such as control of a cursor or a prosthetic limb. The interface enables a direct communications pathway between the brain and the object to be controlled.															
PRER	EQUIS	ITE – I	NIL												
COUR	RSE OB														
1	To learn the basics of brain computer interfacing and to study about data acquisition, hardware and software requirements.														
2	To stu	ıdy abo	ut the E	BCI app	roaches										
3	To ge	t an ide	a about	EEG F	eature I	Extracti	on met	hods.							
4	To acquire knowledge about EEG Translation methods.														
5	5 To acquire knowledge about MATLAB tools for BCI.														
	RSE OU						• •								
	success								0						
CO1.	CO1. Describe about the brain computer interface approaches. Understand														
CO2.	Examir	ne the d	evelop	ment of	brain c	ompute	r interf	acing.					Aj	ply	
CO3.	Outline	the kno	owledge	about	EEG Tı	ranslatio	on meth	nods.					Aı	nalyze	
CO4.	Evaluat	e the da	ata acqu	isition,	hardwa	are and	softwar	e requi	rements	5.			Ev	aluate	
CO5.	Develop	MAT	LAB ba	ised too	ls for b	rain coi	nputer	interfac	e.				Cr	eate	
MAPF	PING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М				L							М	S	М	Μ
CO2	S	М	М		М	L			L			S	S	S	S
CO3	S	S	S		М	М			М		L	S	S	S	S
CO4	S	S	S	S	S	S	М	S	S	М	М	S	S	S	S
CO5	S	S	S	S	S	S	М	S	S	S	S	S	S	S	S
S- Stro	ong; M-N	Medium	n; L-Lo	W											
SYLL	ABUS														
		ION													
IN LKO	ODUCT	IUN													

Introduction to Brain computer interfaces, The Evolution of BCIs, Brain signals for BCIs: Neuronal Activity inmotor cortex and related areas, Electrical and Magnetic fields produced by the brain, Signals reflecting brain metabolic activity, ConceptofBCI,InvasiveandNon-invasiveTypes,EEGStandards,SignalFeatures,SpectralComponents,EEGData

Acquisition, Pre-processing, Hardware and Software, Artifacts, Methods to Remove, Near Infrared BCI.

BCI APPROACH METHODS

Mu Rhythm – Movement Related EEG Potentials – Mental States – Visual Evoked Potential Based – P300 component.

EEG FEATURE EXTRACTION METHODS

Time/Space Methods - Fourier Transform - Wavelets - AR models - Band pass filtering PCA - Laplacian Filters -Linear and Non-linear Features.

EEG FEATURE TRANSLATION METHODS

LDA – Regression – Memory Based – Vector Quantization – Gaussian Mixture Modeling – Hidden Markov Modeling.

MATLAB-BASED TOOLS FOR BCI

Introduction, Data Streaming: Field Trip, Data-Suite: Data-River and Mat-River, EEGLAB Online Data Processing: A minimalistic BCI script using native MATLAB code, Other MATLAB BCI Classification tools, BCILAB.

TEXT BOOKS:

- 1. Jonathan R. Wolpaw, Elizabeth Winter Wolpaw, "Brain computer interfaces principles and practice", Oxford University Press -2012.
- 2. Desney S, Tan & Anton Nijholt, "Brain Computer interfaces: Applying our minds to human computer interaction", Springer Science and Business Media, 2010.

REFERENCES:

- 1. Bernhard Graimann, Brendan Allison, Gert P furtscheller, "Brain computer interfaces Revolutionizing Human Computer interaction", Springer-2010.
- 2. Special Issue on "Brain Control Interfaces", IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 14, June 2006.
- 3. Andrew Webb, "Statistical Pattern Recognition", Wiley International, Second Edition, 2002.
- 4. R.Spehlmann, "EEG Primer", Elsevier Biomedical Press, 1981.

COUR	COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Dr.A.Nagappan	Professor & Principal	BME	Principal.vmkec@vmu.ac.in						
2	Dr. M.Ravindiran	Professor & Head	BME	ravindiran@avit.ac.in						
3	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in						

ROBOTICS & AUTOMATION IN MEDICINE

Category	L	Т	Р	
EC(OE)	3	0	0	

Credit

3

PREAMBLE

The purpose of learning this course on automation and robotics in medicine to acquire knowledge and understand the basic function and to create new application of robotic and automation system in medical field especially in surgery.

PREREQUISITE – NIL

COURSE OBJECTIVES

1	To understand the basics of Robotics, Kinematics.						
2	To understand the basics of Inverse Kinematics.						
3	To explore various kinematic motion planning solutions for various Robotic configurations.						
4	To study the basic inverse Kinematic motion planning solutions.						
5	To explore various applications of Robots in Medicine.						
COURSE OUTCOMES							
On the	On the successful completion of the course, students will be able to						

CO1. Understand the basics of robotic systems. Understand **CO2.** Illustrate the application of automation and robotics in medicine. Apply CO3. Categorize the level of planning for various Robotic configurations. Analyze **CO4.** Compare Robotics system and formulate Kinematics. Evaluate Create

CO5. Design Robotic systems for Medical application.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

-															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М		L	L					L			М	М	М	S
CO2	S		М	М				М	М			S	М	S	S
CO3	S	S	S	М	М		L	М	М		L	S	М	S	S
CO4	S	S	S	S	S	S	М	S	S	М	М	S	S	S	S
CO5	S	S	S	S	S	S	М	S	S	М	S	S	S	S	S

S- Strong; M-Medium; L-Low

SYLLABUS

INTRODUCTION

Introduction Automation and Robots, Classification, Application, Specification, Notations, Direct Kinematics Dot and cross products, Coordinate frames, Rotations, Homogeneous coordinates Link coordination arm equation - Five-axis robot, Four-axis robot, Six-axis robot,

KINEMATICS

Inverse Kinematics – General properties of solutions tool configuration, Five axis robots, Three Four axis, Six axis Robot, Workspace analysis and trajectory planning work envelope and examples, workspace fixtures, Pick and place operations, Continuous path motion, Interpolated motion, Straight-linemotion.

ROBOT VISION

Robot Vision Image representation, Template matching, Polyhedral objects, Shane analysis, Segmentation – Thresholding, region labeling, Shrink operators, Swell operators, Euler numbers, Perspective transformation, Structured illumination, Camera calibration.

PLANNING

Task Planning Task level programming, Uncertainty, Configuration, Space, Gross motion, Planning, Grasp Planning, Finemotion planning, Simulation of planar motion, Source and Goal scenes, Task Planner simulation.

APPLICATIONS

Applications in Biomedical Engineering – Bio Engineering, Biologically Inspired Robots, Neural Engineering, Application in Rehabilitation – Interactive Therapy, Bionic Arm, Clinical and Surgical – Gynaecology, Orthopaedics, Neurosurgery.

TEXT BOOKS:

- 1. Robert Schilling, "Fundamentals of Robotics-Analysis and control", Prentice Hall, 2003.
- 2. J.J.Craig, "Introduction to Robotics", Pearson Education, 2005.

REFERENCES:

- 1. Staugaard, Andrew C, **"Robotics and Artificial Intelligence: An Introduction to Applied Machine Learning"**, Prentice Hall Of India,1987
- 2. Grover, Wiess, Nagel, Oderey, "Industrial Robotics: Technology, Programming and Applications", McGraw Hill, 1986.
- 3. Wolfram Stadler, "Analytical Robotics and Mechatronics", McGraw Hill, 1995.
- 4. Saeed B. Niku, "Introduction to Robotics: Analysis, Systems, Applications", Prentice Hall, 2001.
- 5. K. S. Fu, R. C. Gonzales and C. S. G. Lee, "Robotics", McGraw Hill, 2008.

COURSE DESIGNERS

0000										
S.No.	Name of the Faculty	Designation	Department	Mail ID						
1	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran@avit.ac.in						
2	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in						
3	Mr. S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in						

17ECCC04	SIGNALS AND SYSTEMS	Category	L	Т	Р	Credit
		EC(OE)	3	0	0	3

PREAMBLE

Signals and Systems arise in a wide variety of fields. These concepts and techniques associated with in areas of science and technology. Signals are functions of one or more independent variables contain information about the behavior or nature of some phenomenon. Signals vary continuous / discrete in time. Systems respond to particular signals by producing other signals (output) having some desired behavior. It introduces the students to analyze signals and systems and to design systems to enhance or restore signals that have been degraded in some way.

PREREQUISITE: NIL

COUI	RSE OBJECTIVES							
1	To understand the various classifications of Continuous time and Discrete time Signals	and Systems.						
2	To learn about the spectral analysis of Periodic and Aperiodic Signals using Fourier series.							
3	To impart the knowledge in analysis and characterization of the CT system through Laplace transforms.							
4	To learn about the analysis and characterization of the DT system through Discrete Fourier Transforms and Z Transform.							
COUI	RSE OUTCOMES							
On the successful completion of the course, students will be able to								
CO1.	CO1. Classify the type of signals and systems. Understand							
	Determine the time and frequency domain characteristics of continuous time periodic and aperiodic signals with the properties of Fourier Series and Fourier transform respectively.	Apply						
CO3.]	Find the response of a continuous time LTI System using convolution.	Apply						
	Determine the time and frequency domain characteristics of discrete time periodic and aperiodic signals using the properties of DTFT, DFT & Z-Transforms respectively.	Apply						
	Compute DFT and IDFT coefficients of a given discrete time sequence using Fast Fourier Transform algorithms.	Apply						
	Apply and characterize the causality and stability of Discrete LTI system using Z- Fransforms.	Apply						

MAP	PING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	L	-	-	-	-	-	-	-	-	-	М	-	-
CO2	S	М	М	-	М	-	-	-	М	-	-	М	-	-	М
CO3	S	М	М	-	М	-	-	-	М	-	-	М	-	-	-
CO4	S	М	М	-	М	-	-	-	М	-	-	М	-	-	-
CO5	S	М	М	-	М	-	-	-	М	-	-	М	М	М	-
C06	S	S	М	-	М	-	-	-	М	-	-	М	М	-	-
S-Stro	ong; M	-Mediu	m; L-I	LOW						I					

CLASSIFICATION OF SIGNALS AND SYSTEMS

Continuous time signals, Discrete time signals, Unit step, Unit ramp, Unit impulse – Representation of signals in terms of unit impulse, Classification of continuous time signals & Discrete time signals-Continuous time systems-Discrete time systems- Classification of continuous time systems and Discrete time systems.

ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series analysis-Representation of Continuous time Periodic signals – Trigonometric and exponential-Spectral Properties of Periodic power signals - Properties of Continuous time Fourier series – Parseval's relation for power signals, Fourier transform analysis-Representation of Continuous time signals- Properties of Continuous time Fourier transform –Fourier transform of a Periodic function, Rayleigh's Energytheorem.

LTI CONTINUOUS TIME SYSTEM

Convolution Integral, Impulse response, Solution of Differential equation with initial conditions- Zero state response and Zero input response, Block diagram representation, Fourier methods for analysis, Laplace transform analysis.

ANALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS

Representation of sequences – Discrete Time Fourier Transform (DTFT) - Discrete Fourier Transform (DFT) and its properties –Fast Fourier Transform- FFT Algorithm, DIF & DIT-Z Transform-Inverse Z Transform, Unilateral Z-Transform.

LTI DT SYSTEM

Convolution sum - Impulse response and properties of LTI systems - Difference equations - Z Transform analysis - System stability and causality - Frequency response - Block Diagram presentation.

TEXT BOOKS:

- 1. Alan V.Oppenheim, Ronald W. Schafer, "Discrete time signal processing", Pearson education , 2nd edition, 2007.
- 2. John G. Proakis and Manolakis, "Digital Signal Processing, Principles, Algorithms and Applications", Pearson Education, 4thEdition,2007.

REFERENCE BOOKS:

- 1. B.P. Lathi, "Linear Systems & Signals", Oxford Press, Second Edition, 2009.
- 2. Rodger E Ziemer, William H. Tranter, D. Ronald Fannin, "Signals and Systems continuous and Discrete", Pearson Education, 4th Edition, 2009.
- 3. Douglas K Linder, "Introduction to Signals and Systems", Mc-Graw Hill, 1st Edition, 1999.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.T.Muthumanickam	Professor & Head	ECE	muthumanickam@vmkvec.edu.in
2	Mr.S.Selvaraju	Associate Professor	ECE	selvaraju@vmkvec.edu.in
3	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Cate	gory	L	Т	P	Cred	it			
<b>17ECCC0</b>	1	SEMIC	CONDU	CTOR	DEVIC	CES	EC	C(OE)		3	0	0	3				
PREAMBLE							ЦС	(OL)		0	v	v	0				
The course is		to teach	the phy	sical pr	inciples	and op	erationa	al chara	cteristics	of semi	conduct	or device	s with en	nphasis			
on metal-oxid																	
Silicon Nano													ntended 1	to help			
students to de			analytic	al skills	and cor	ntinue a	dvanced	d researe	ch in the	varied br	ancheso	f					
semiconducto																	
PRERQUISI																	
COURSE OF																	
				micond	uctors a	nd the	working	of sem	iconducto	or device	s like PN	and Zene	er diodes				
	their app					C.											
		-		• •	-	-		-			and limi	tation of E	BJTs.				
	nderstand										_						
	To study the working principle and applications of discrete and integrated voltage regulatorsTo familiarize with several special semiconductor devices like SCR, MISFET, TFET, HEMT and Silicon Nano																
		with se	veral sp	ecial se	micondu	actor de	evices li	ke SCR	, MISFE	Γ, TFET,	HEMT	and Silico	n Nano				
	tubes.	-															
COURSE OU			6.1														
On the succes	-																
CO1. Explai					perties				emicondu	ictor L	Inderstar	nd					
devices like D Clamper, etc.,		their rel	evant a	pplicati	ons like	HWK,	FWR, C	Ippera	na								
CO2. Quantif		ification	n and a	oractor	istics of	<b>BIT</b> in	difforor	t config	uration		pply						
CO2. Quantin CO3. Demons	· •										pply						
and voltage re			ppie iac			C Inte	15 111 51	mpie po	ower supp		рргу						
CO4. Relate t	-				an of IEI	CT and	:40 fam:	1:		•							
CO4. Relate t	ne constru	uction a	nd chara	acteristi	cs of JFI	ET and	its fami	nes.		A	pply						
CO5. Examin	e the chai	acteristi	cs and	applicat	ions of s	special	devices	like Sho	ockley	А	pply						
Diode, Unijur																	
MAPPING W	VITH PR	OGRA	MME	OUTCO	OMES A	AND P	ROGRA	AMME	SPECIF	TIC OUT	COME	5					
COS PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1 M	M	-	-	-	-	-	-	M	-	-	M	M	M	-			
CO2 M	M	М	-	-	_	-	-	M	-	_	M	-	-	_			
CO3 M	M	M	-	-	_	М	-	M	_	_	M	М	_	_			
CO4 S	M	M	М	-	_	M	-	M	-	_	M	-	_	_			
CO5 S	M	-	M	-	_	-	-	M	-	-							
S- Strong; M-			111					111			171	171	111	171			

S- Strong; M-Medium; L-Lo

### SYLLABUS

#### SEMICONDUCTOR DIODES AND APPLICATIONS

Introduction, Semiconductor Materials - Ge, Si, and GaAs, Covalent Bonding and Intrinsic Materials, Energy Levels, n- Type and p-Type Materials, Semiconductor Diode, Resistance Levels, Diode Equivalent Circuits, Transition and Diffusion Capacitance, Reverse Recovery Time, Diode Specification Sheets, Semiconductor Diode Notation, Diode Testing, Zener Diodes, Light-Emitting Diodes, Sinusoidal Inputs; Half-Wave Rectifier, Full-Wave Rectifier, Clipper, Clamper, Zener Diode, Voltage-Multiplier Circuits, PracticalApplications

#### **BIPOLAR JUNCTION TRANSISTORS**

Introduction, Transistor Construction, Transistor Operation, Common-Base Configuration, Common-Emitter Configuration, Common-Collector Configuration, Limits of Operation, Transistor Specification Sheet, Transistor Testing, Transistor Casing and TerminalIdentification.

#### FIELD EFFECT TRANSISTORS

Introduction, Construction and Characteristics of JFETs, Transfer Characteristics, Important Relationships, Depletion-Type MOSFET, Enhancement-Type MOSFET, MOSFET Handling.

#### **VOLTAGE REGULATORS**

Introduction, General Filter Considerations, Capacitor Filter, RC Filter, Discrete Transistor Voltage Regulation, IC Voltage Regulators.

#### SPECIAL PURPOSE DEVICES

Introduction, Silicon-Controlled Rectifier, Basic Silicon-Controlled Rectifier Operation, SCR Characteristics and Applications, Shockley Diode, Diac, Triac, Unijunction Transistor, Phototransistors, MISFETs, MESFETs, TFETs, HEMTs, Silicon Nano WireTransistor.

#### **TEXT BOOK:**

1. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory", Pearson Education,

11th Edition,2013.

#### **REFERENCE BOOKS:**

- 1. Jacob Millman, Christos C Halkias, Satyabrata Jit, "Electron Devices and Circuits", Tata McGraw Hill, 2010.
- 2. David A Bell, "Fundamentals of Electronic Devices and Circuits", Oxford Press, 2009.
- 3. B L Theraja, R S Sedha, "Principles of Electronic Devices and Circuits", S.Chand, 2004.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.P.Selvam	Professor	ECE	hodeee@vmkvec.edu.in
2.	Dr.T.Sheela	Associate Professor	ECE	sheela@vmkvec.edu.in
3.	Mr.N.Manikanda Devarajan	Assistant Professor	ECE	manikandadevarajan@vmkvec.edu.in
4.	Mr. R. Karthikeyan	Assistant Professor	ECE	rrmdkarthikeyan@avit.ac.in

17EC	CC15				)G & 1				Ca	tegory	L	Т	Р	Cred	it
1,20	0010			COMN	AUNI	CATIC	DN		EC(C	E)	3	0	0	3	
	MBL														
														nication	
														er design	,
				ommur	nication	n Techi	niques,	Noise	Analy	sis and I	Multiple	exing tec	chniques	•	
PRER	EQUI	SITE -	NIL												
COU	RSE O	RIFC	TWES												
COUL		DJECI													
1 T	'o Unde	erstand	the ba	sic elei	nents o	of analo	og com	munic	ation s	ystem					
							0								
										tion of A					
										Systems		mation 7	Theory		
			0	1				<u> </u>		er transn					
				lge of	Digital	Comn	nunicat	tion cir	cuits ir	n various	s fields.				
	RSE O														
	e succes								able to	)		<b>TT 1</b> (	1		
	nterpre								11.			Underst	and		
	llustrat							ous M	odulato	ors,		Apply			
	Demod			-								Annly			
	Apply on the Apply of the Apply					stimate	Entro	py, Mi	ituai			Apply			
	Demons					e digita	1 carrie	er mod	ulation	and		Apply			
	etermir					suigita		21 mou	uration	and		дрргу			
	Analyze					f sprea	d spec	trum te	chniau	ies		Analyze			
						- spree	a spee			• 5					
MAP	PING V	WITH	PROG	FRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPE	CIFIC (	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	S	L	-	-	-	-	-	-	-	-	-	L	S	-	-
CO2	S	М	М	-	М	-	-	-	-	-	-	М	М	-	-
CO3	S	М	М	М	-	-	-	-	-	-	-	М	-	-	-
CO4	S	S	М	М	-	-	I	-	-	-	-	М	-	М	Μ
CO5	S	М	М	М	L	-	-	-	-	-	-	L	-	М	-
	ong; M		m; L-I	LOW											
SYLL	ABUS														

### Analog Communication Systems

Principles of Amplitude Modulation – AM Modulators- Double Side Band Suppressed Carrier Modulation, Single Side Band Modulation, Vestigial Side Band Modulation, AM Demodulators, AM transmitters-Low level & High level Transmitters, AM Receivers – TRF, Super Heterodyne Receiver, Double conversion AMreceivers.

### **Angle Modulation: Transmission And Reception**

Angle Modulation - FM and PM, Modulation Index, Frequency Modulators and Demodulators, Phase Modulators, FM transmitters- Direct & Indirect transmitters, Angle Modulation Vs Amplitude Modulation, FM Receivers, Frequency Vs Phasemodulation.

### Analog to Digital Transition Systems & Information Theory

Pulse Amplitude Modulation, Pulse Position Modulation, Pulse Code Modulation, Sampling Rate, DPCM, Delta Modulation, Time Division Multiplexing, Information Theory- Uncertainty, Information and entropy, source coding theorem, Discrete Memoryless channels, Mutual Information, Channel capacity, Channel coding theorem.

### **Digital Transmission**

Pulse Transmission - Inter Symbol Interference, Eye pattern, Digital carrier Modulation-Binary Amplitude Shift Keying, Binary Frequency Shift Keying, Binary Phase Shift Keying, QPSK, bit and baud rate, BER Analysis

### **Spread Spectrum Modulation**

Pseudo noise sequences, Direct sequence Spread Spectrum with coherent BPSK, Frequency hop spread spectrum modulation, Multiple Access Techniques – Wireless Communication, TDMA and FDMA

### **TEXT BOOK:**

1. Simon Haykin and Michael Moher, "Communication systems" John Wiley & Sons, Fifth Edition, 2016

### **REFERENCE BOOKS:**

1. Simon Haykin and Michael Moher, "An Introduction to Analog and Digital Communications", John Wiley & Sons, second Edition, 2006.

2. Martin S.Roden, "Analog and Digital Communication System", 3rd Edition, PHI,2002

3. WayneTomasi, "ElectronicCommunicationSystems:FundamentalsThroughAdvanced", PearsonEducation, 2001.

4. B. Carlson, "Introduction to Communication systems", 3rd Edition, McGraw Hill, 1989

S.No.	RSE DESIGNERS Name of the Faculty	Designation	Department	Mail ID
1	Mr.B.Rajasekaran	Associate Professor	ECE	rajasekaran@vmkvec.edu.in
2	Mrs.S.Valarmathy	Associate Professor	ECE	valarmathy@vmkvec.edu.in
3	Mr.P.Subramanian	Associate Professor	ECE	subramanian@avit.ac.in

### 

<b>17EEEC20</b>
I/LLLLLL

3

### PREAMBLE

Introduce the students to study the fundamentals of computing and modeling software environments for electrical engineering. This Course contains Programming in numerical computing and modeling software environments for electrical engineering. No prior programming experience or knowledge of SCILAB is assumed, and the course is structured to allow thorough assimilation of ideas through hands-on examples and exercises.

PRERE	QUISITE NIL										
COURS	E OBJECTIVES										
1	To study basic concepts of scientific programming using SCILAB.										
2	To learn about the Basics of Program of SCILAB and related Mathemat	tical Applications.									
3	Analyze the concepts of Program of SCILAB.										
4	4 To understand the different tools in SCILAB and ODE, DAE										
5	To apply a software program to Electrical circuits and solve the simulati	on based solutions.									
COURS	E OUTCOMES										
On the s	uccessful completion of the course, students will be able to										
CO1	Understand the main features of the SCILAB program development environment to enable their usage in the higher learning.	Understand									
CO2	Understand the need for simulation/implementation for the verification of mathematical functions.	Understand and Analyze									
CO3	Implement simple mathematical functions/equations in numerical computing environment such as SCILAB.	Analyze									
CO4	Interpret and visualize simple mathematical functions and operations thereon using plots/display.	Create and Apply									
CO5	Analyze the program for correctness and determine/ estimate/ predict the output and verify it under simulation environment using SCILAB tools	Create									

MAPPI	NG W	TH P	ROGI	RAMM	IE OU	TCOM	IES A	ND PF	ROGR	AMME	SPEC	IFIC O	UTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М					L		L				L	L	М	
CO2	М		L					L		L		L	L	М	
CO3	S	М	L		L		L	L	М	М	L		М	L	L
CO4	S	М	М	L	М	М	М		S	М	М	М	М	L	М
CO5	S	S	L	М	М	L	S	L	М	S	S	S	S	S	S

S- Strong; M-Medium; L-Low

# SYLLABUS

# **INTRODUCTION**

Introduction to SCILAB - Constants - Data types - SCILAB Syntax - Data type related functions - Over loading.

# **GRAPHICAL ANALYSIS USING SCILAB**

The media – global plot parameters – 2D and 3D plotting – examples – printing graphics and exporting to Latex.

# SCILAB PROGRAMMING

Linear algebra – Polynomial and rational function manipulation – Sparse matrices – random numbers – cumulative distribution functions and their inverse – building interface programs – inter SCI – dynamic linking – static linking.

# SCILAB TOOLS

Systems and control toolbox – improper systems – system operation – control tools classical control – state space control – model reduction – identification – linear matrix inequalities – integrating ODEs – integrating DAEs.

# **APPLICATIONS**

Resistive circuits – inductive and capacitive circuits – transients – steady state analysis – logics circuits – electronic devices - DC machines

### TEXT BOOK

1. Claude Gomez Engineering and Scientific Computing with SCILAB, Birkhauserpublications

### REFERENCES

1. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientificand Engineering Applications A. Vande Wouwer, P. Saucez, C. V.Fernández 2014ISBN: 978-3319067896

2. SCILAB(a Free Software to Matlab), Er. HemaRamachandran and Dr. Achutsankar Nair, S.Chand

# Publishers, ISBN-10: 8121939704,2011

3.<u>http://in.mathworks.com/</u>

4.https://www.scilab.org/resources/documentation/tutorials

5. <u>http://www.scilab.org/</u>

6.SCILAB: A Begineer's Approach, Anil Kumar Verma, Cengage Learning India Pvt. Ltd.; Firstedition (2018), ISBN-10: 9386858932, ISBN-13:978-9386858931

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	e-Mail ID
1	P. LOGANATHAN	Assistant Professor	EEE / VMKVEC	loganathan@vmkvec.edu.in
2	R. SATHISH	Assistant Professor	EEE/ VMKVEC	sathish@vmkvec.edu.in

1501					DADI	E /DE	CINC		. 7		Categor	y L	Т	P C	Credit
17BM	SE10			WEA	KABI	LE TE	CHNU	DLOGY	Ŷ	-	BM(OF	E) 3	0	0	3
<b>PREA</b> This co		akes the	e studen	its to un	derstan	d the fu	ındame	ntals an	id appli	cations o	f the wea	rable tec	chnolo	gy.	
PRER	EQUIS	ITE – I	NIL												
COUR	SE OB	JECTI	VES												
1	To u	ndersta	nd the	fundam	entals o	f senso	rs and v	wearabl	e techn	ology.					
2	To a	scertair	the de	sign and	d integr	ation of	f the sm	hart text	iles.						
3	To understand the electronic textiles.														
4	T endeavor various sensor in sports wearable application.														
5	To understand the cloud storage of wearable devices.														
COUR	SE OU	TCOM	IES												
On the	success	ful con	npletion	of the	course,	student	ts will t	be able t	to						
CO1.	Discuss	s the fu	ndamen	tals of	sensor a	and wea	rable te	echnolo	gy.		U	nderstar	d		
CO2.	Illustra	te the e	lectroni	c textile	es and i	ts appli	cations	•			Aj	pply			
CO3.	Analyz	e the se	ensor fo	r differe	ent wea	rable ap	oplicati	ons.			A	nalyze			
CO4.	Compa	re the v	arious	data sto	rage of	wearab	le syste	ems.			Ev	valuate			
CO5.	Design	of sma	rt cloth	ing.							Cı	reate			
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROC	GRAM	ME SPE	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L							L			S	S	М	М
CO2	S	М	L	L					М			S	S	М	М
CO3	S	М	М	М	S	М	L		М			S	S	М	М
CO4	S	S	S	S	S	S	М	М	S	S	М	S	S	S	S
CO5	5 S S S S S S M M S S S S S S S														
S- Stro	ng; M-N	Medium	n; L-Lo	w				1	1	1				•	

#### BASICS OF SENSORS AND WEARABLE TECHNOLOGY

 $\label{eq:construction} Introduction \ to \ sensors - Sensor \ Physical \ Properties - Electric \ (Resistive, \ Capacitive \ and \ Inductive) - Piezoelectric - Optic - Photo \ elastic \ - \ Thermoelectric - Electrochemical.$ 

Wearable computers – Wearable Electronics – Intelligent Clothing – Industry on wearable technology – Current Trends – Market Forecast.

#### SMART CLOTHING

Introduction - Design of Smart Cloths - 2D Design for smart wearables - Textile Development - 3D Design for smart wearables - Construction of smart wearables - Integration - Prototype Development.

#### **ELECTRONIC TEXTILES**

Conductive Fibers for textiles – Conductive for Polymers textiles – Carbon Nanotubes yarns – Textile and Electronics Integration - Embroidered Antenna – Electronic textiles for Military Applications.

#### SENSOR FOR WEARABLE APPLICATIONS

Load and Pressure Measurement sensor – Sports Applications – Inertial Sensor – Sports Application – Optical Sensor – Sports Application – Angle & Displacement Sensor – Sports Application.

#### DATA STORAGE FOR WEARABLE TECHNOLOGY

Introduction – Storage in Consumer wearable - Cloud storage – Remote Cloud – Sensor Cloud – Cloudlet - Cloud storage Architecture – Confidential disk and Cloud storage with encryption – Two-layer confidentialstorage.

#### **TEXT BOOKS:**

- 1. Patrick F. Dunn, "Fundamentals of Sensors for Engineering and Science", CRC Press, Taylor & Francis.
- 2. Jane McCann, David Bryson, **"Smart Clothes and Wearable Technology"**, CRC Press, Woodhead Publishing Ltd.

#### **REFERENCES:**

- 1. Daniel A. James, Nicola Petrone, "Sensors and Wearable Technologies in Sport: Technologies, Trends and Approaches forImplementation".
- 2. Marrington, Andrew, Kerr, Don, "Management Association, Information Resources Managing Security Issues and the Hidden Dangers of WearableTechnologies".
- 3. Tilak Dias, "Electronic Textiles: Smart Fabrics and Wearable Technology", Elsevier, WoodheadPublishing.

#### **COURSE DESIGNERS**

0001												
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr. M.Ravindiran	Professor & Head	BME	ravindiran@avit.ac.in								
2	Mr.R.Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in								
3	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in								

17ECS	SF21	WIR	ELESS	S SENS	SOR N	ETWOR	RKS	Cate	gory	1		Т	Р	Cr	edit
17EC.	51221			AND	ΙΟΤ			EC(	OE)		3	0	0		3
PREA	MBL	£								I		I	I		
To un	derstan	d the f	undame	ental co	oncepts	of wirele	ess se	nsor n	etwork	s and In	ternet of	Things,	have an	enhance	d
knowl	edge of	the va	rious p	rotocol	s with	Internet o	of Thi	ngs in	the rea	ıl world	scenario	).			
PRER	EQUI	SITE -	NIL												
COUI	RSE O	BJECT	<b>FIVES</b>												
1	To un	derstan	d the v	arious	sensor	network of	conce	epts							
2	To Kr	now the	e physic	cal laye	r issue	s and anal	lyze I	Mediu	m Acce	ess Cont	rol Proto	ocols			
3	To ide	entify v	vith the	IoT R	eferenc	e Archite	ecture	and R	leal Wo	orld Desi	ign Cons	straints			
4	To rec	cognize	e the va	rious Io	oT Prot	cocols ( D	atalin	nk, Net	twork,	Transpo	rt, Sessi	on, Servi	ice)		
5	To Ur	ndersta	nd IoT	value c	hain st	ructure (d	device	e, data	cloud)	, applica	tion area	as and te	chnolog	ies invol	ved
COUI	RSE O	UTCO	MES												
	Describ network		explain	radio s	tandaro	ds and con	mmu	nicatio	on proto	ocols for	wireless	s sensor		Unders	tand
CO2. 1	Explain	the fu	nction	of the r	node ar	chitecture	e and	use of	sensor	s for var	ious app	olications	8.	Unders	tand
			chitectu latform		nctions	and perfo	ormar	nce of	wireles	ss sensor	networ	ks		Unders	tand
CO4. ]	Describ	e the b	asic co	ncepts	in IoT.									Unders	tand
CO5. 1	Develo	p web s	services	s to acc	ess/cor	ntrol IoT o	devic	es						Apply	
CO6. 1	Deploy	an IoT	applic	ation u	sing Ra	aspberry I	Pi.							Apply	
MAPI	PING V	WITH	PROG	RAM	ME OU	J <b>TCOMI</b>	ES Al	ND PI	ROGR	AMME	SPECI	FIC OU	тсом	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6 P	<b>PO</b> 7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	-	L	-	-	-	-	-	-	L	S	M	-
CO2	S	S	S	-	М	-	-	-	-	-	-	М	М	-	-
CO3	S	М	М	-	L	-	-	-	-	-	-	L	-	-	-
CO4	S	S	S	-	М	М	-	-	-	-	-	Μ	-	Μ	-
CO5	S	М	М	-	М	М	-	-	-	-	-	Μ	М	-	М
S- Stro	ong; M-	-Mediu	ım; L-L	ωw											

### **INTRODUCTIONTOWIRELESSSENSORNETWORKS**

Course Information, Introduction to Wireless Sensor Networks: Motivations, Applications, Performance metrics, History and Design factors Network Architecture: Traditional layered stack, Cross-layer designs, Sensor Network Architecture Hardware Platforms: Motes, Hardwareparameters

### **INTRODUCTION TO NS-3**

Introduction to Network Simulator 3 (ns-3), Description of the ns-3 core module and simulation example.

### MEDIUM ACCESS CONTROL PROTOCOL DESIGN

Fixed Access, Random Access, WSN protocols: synchronized, duty-cycled Introduction to Markov Chain: Discrete time Markov Chain definition, properties, classification and analysis MAC Protocol Analysis: Asynchronous dutycycled. X-MAC Analysis (Markov Chain)

### **FUNDAMENTALS OF IOT**

Introduction-Characteristics-Physical design - Protocols - Logical design - Enabling technologies -IoT Levels -Domain Specific IoT – IoT vs. M2M.

### **IOT DESIGN METHODOLOGY & BUILDING IOT WITH RASPBERRY PI**

IoT systems management – IoT Design Methodology – Specifications Integration and Application Development. Physical device - Raspberry Pi Interfaces - Programming - APIs / Packages - Web services

### **TEXT BOOKS:**

- 1. W.DargieandC.Poellabauer(2010).FundamentalsofWirelessSensorNetworks-TheoryandPractice. Wiley.
- 2. ArshdeepBahga, VijayMadisetti (2015). Internet of Things-Ahands-on approach. Universities Press.

### **REFERENCE BOOKS:**

- 1. KazemSohraby, DanielMinoliandTaiebZnati(2007). Wirelesssensornetworks -Technology, Protocols, and Applications. Wiley Inter science.
- 2. Manoel Carlos Ramon (2014). Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for LinuxProgrammers.
- 3. Takahiro Hara, Vladimir I. Zadorozhny, and Erik Buchmann (2010). Wireless Sensor Network Technologies for the Information Explosion Era.Springer.
- 4. Marco Schwartz (2014). Internet of Things with the Arduino Yun. PacketPublishing

COU	RSE DESIGNERS			
S.No	Name of the	Designation	Department	Mail ID
	Faculty			
1	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in
2	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in

### COUDER DEGLOVEDO

17ECSE22	W	IRELE			DLOGIE	S	Cate	gory	]	Ĺ	Т	Р	Cre	edit
			FOR	RIOT		-	EC(	OE)		3	0	0		3
PREAMBL											I	I		
The c designed to													. The cou	
the latest se														
PREREQU	ISITE -	- NIL												
COURSE (	)BJEC1	<b>FIVES</b>												
1 Und	erstand	he wire	eless te	echnolo	gies, wir	eless	networ	k stand	lards.					
2 Gair	the kno	wledge	e on wi	ireless 1	networks	, deni	al of se	ervice a	ttacks a	nd client	t-side thr	eats.		
					e data net									
4 To U	Indersta	nd the	variou		rotocols (	(Data	link N	Jetworl	Traner	ort See	sion Ser	vice)		
- 100	nuersta	nu the	variou	5 101 11		Data	, I.		, mansp	5011, 503	51011, 501	vice)		
5 To c	lassify F	Real W	orld Io	T Desig	gn Consti	raints,	, Indus	trial Au	utomatio	n in IoT	•			
COURSE (	OUTCO	MES												
On the succ	essful co	mpleti	on of t	he cour	se, stude	ents w	ill be a	ble to						
CO1. Know													Unders	tand
CO2. Show									r vulnera	abilities	such as 1	rogue	Apply	
access point				· · ·										
CO3.Demon										. 1			Apply	
CO4Summa						-						•	Evaluat	e
CO5. Invent Bluetooth at			er mig	nt attem	ipt to suc	overt a	and by	pass w	ireless so	ecurity r	neasures	1n	Create	
MAPPING			RAM	ME OI	TCOM	ES A	ND PI	ROGR	AMME	SPECI	FIC OU	тсомі	ES	
COS PO1		PO3	PO4	PO5		PO7	PO8		PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 M	L	103 M	M	105 M	-	-	-	-	-	-	-	-	-	-
CO2 M	L	M	M	M	-	-	_	-	-	-	-	-	-	-
CO3 S	L	М	М	М	-	-	-	М	_	-	-	S	М	-
CO4 S	L	S	S	М	-	-	-	М	М	-	М	S	-	-
CO5 S	М	S	S	S	-	-	L	Μ	М	М	М	М	М	М
S- Strong; N	I-Mediu	m; L-L	LOW											

## MOBILE & WIRELESS TECHNOLOGIES:

Introduction to wireless technologies-Mobile cellular networks -Personal Area Networks -Transmission Media – WLAN standards, controllers -Securing WLAN -Countermeasures -Wired Equivalence Protocol(WEP).Wireless threats:Kinds of security breaches-Eavesdropping -Communication Jamming -RF interference -Covert wireless channels -DOS attack –Spoofing -Theft of services -Traffic Analysis-Cryptographic threats -Wireless security Standards.

### **MOBILE NETWORKS SECURITY:**

Wireless Device security issues -CDPD security (Cellular Digital Packet Data)-GPRS security (General Packet Radio Service) -GSM (Global System for Mobile Communication) security –IP security -3G / 4G security.

### WIRELESS TRANSPORT LAYER SECURITY:

Secure Socket Layer -Wireless Transport Layer Security -WAP Security Architecture -WAP Gateway -Wireless Intrusion Detection and Prevention Systems (WIDS/WIPS)

### **BLUETOOTH & WIFI SECURITY:**

Basic specifications -Pico nets –Scatter nets -Bluetooth security architecture –Security at the baseband layer and link layer –Frequency hopping –Security manager –Authentication –Encryption -WiFi Hot spot architecture -Wireless honey pots -Security in IEEE 802.11.

### WIRELESS SENSOR NETWORK SECURITY

Attacks on wireless sensor network and Preventive mechanisms: authentication and traffic analysis, Case study: centralized and passive intruder detection Case studies:Public safety wireless networks, Case study 2 –Satellite communications systems, Case study 3 –Wide Area Wireless Data Services (CDPD, GPRS, etc.), Case study 4–Wireless LANs (802.11, etc.), Case study 5 –Wireless Metropolitan Area Networks (e.g., 802.16)

### **Text Books**

1.Wireless Security-Models, Threats and Solutions, Nichols and Lekka, Tata McGraw –Hill, New Delhi, 2006. 2.Wireless Security, Merritt Maxim and David Pollino, Osborne/McGraw Hill, New Delhi, 2005.

### **Reference Books**

 Wireless and Mobile Network Security-Security basics, Security in On-the-shelf andemerging technologies, Hakima Chaouchi, Maryline Maknavicius, ISBN:9781848211179,2010.
 Mobile and Wireless Network Security and Privacy, Springer, ISBN: 0387710574, edition2007.
 Wireless Network Security: Theories and Applications, Springer, ISBN:978-3642365102,2013

COURSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID							
1	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE	rrmdkarthikeyan@avit.ac.in							
2	Mrs.A.Malarvizhi	Assistant Professor	ECE	malarvizhi@vmkvec.edu.in							

# COURSE DESIGNERS

17ECSE(	)7

# SOFTWARE TECHNOLOGY FOR EMBEDDED SYSTEM

Category	L	Т	Р	Credit
EC(OE)	3	0	0	3

### PREAMBLE

The subject introduces the students to the modern technologies used in developing embedded software for better software quality. The introduction is both theoretical and practical. The subject shows why modern embedded software systems are complex, it lists the consequences of complexity, and details how we handle complexity in this context, and how we define and increase software quality. The subject then iterate through the modern solutions available to keep control over the softwaredevelopment process, and how we can increase software quality.

PREREOUISITE – NIL

PKEF	(EQU	1911E	- NIL												
COU	RSE O	BJEC	TIVES	5											
1	1 To learn the concepts of software architecture, analysis, design & maintenance.														
2	To study the Data representation.														
3	To familiarize about the mixing C and assembly														
4	To know about input and output programming														
5															
COU	COURSE OUTCOMES														
On the	e succe	essful c	omplet	tion of	the cou	ırse, st	udents	will be	e able t	0					
CO1.	Explai	n the c	oncept	of soft	ware a	rchitec	ture, a	nalysis	, desig	n & n	nainte	nance	e.	Unders	tand
CO2.	Explai	n the d	ifferen	t Data :	represe	entatior	1.							Unders	tand
CO3.	Illustra	te the	concep	t of inp	out and	outpu	t progr	ammin	g					Арр	ly
CO4.	Exami	ne the	memor	y mana	agemer	nt								Арр	ly
CO5.	Analyz	ze and	implen	nent the	e mixir	ng C an	nd asse	mbly la	inguag	e pro	gramr	ning		Analy	/ze
MAP	PING	WITH	PRO	GRAM	IME C	OUTCO	OMES	AND	PROG	RAM	IME	SPE(	CIFIC	OUTCO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	М	Μ	L	-	М	-	-	-	L	-	-	Μ	Μ	-	М
CO2	Μ	Μ	L	_	М	-	-	-	L	-	-	Μ	-	М	-
CO3	S	М	L	-	L	М	-	-	М	-	-	М	М	-	-
CO4	S	М	L	-	L	S	М	-	L	-	-	М	-	М	-
CO5	S	S	S	-	М	L	М	-	М	-	-	М	М	-	М
S-Str	ong; M	I-Medi	um; L-	Low											

SYLLABUS

**SOFTWARE TECHNOLOGY:** Software Architectures, Software development Tools, Software Development Process Life Cycle and its Model, Software Analysis, Design and Maintenance.

**INTRODUCTION TO DATA REPRESENTATION**: Data representation ,Two's complement, Fixed point and Floating Point Number Formats ,Manipulating Bits in -Memory, I/O Ports, Low level programming in C ,Primitive data types , Arrays, Functions ,Recursive Functions, Pointers, Structures & Unions ,Dynamic Memory Allocation ,File handling ,Linked lists, Queues, Stacks.

MIXING C AND ASSEMBLY: C and assembly, Programming in assembly ,RegisterUsage

Conventions ,Typical use of Addressing Options, Instruction Sequencing , Procedure Call and Return , Parameter passing ,Retrieving Parameters , Everything in pass by value ,Temporary variables

INPUT/ OUTPUT PROGRAMMING: I/O Instructions, Synchronization, Transfer Rate & Latency, Polled Waiting Loops, Interrupt – Driven I/O, Writing ISR in Assembly and C, Non Maskable and Software Interrupts

MEMORY MANAGEMENT: Direct Memory Access, Local and Global Scope, Automatic and Static Allocation, Distinguishing Static from Automatic Object Creation, Initialization and Destruction, Dynamic Allocation

### **TEXT BOOKS:**

- 1. Daniel W.Lewis, "Fundamentals of embedded software where C and assembly meet", Pearson Education.
- 2. Hassan Gomma, "Designing concurrent, distributed, and real time applications with UML", Pearson Education, 2000

### **REFERENCE BOOKS:**

- 1. C.M. Krishna, Kang G. Shin, "Real Time Systems", McGraw Hill International Editions, 1997
- 2. By Albert M. K. Cheng, "Real-time systems: scheduling, analysis, and verification" wiley.

COURS	E DESIGNERS			
S.No.	Name of the Faculty	Designation	Dept	Mail ID
1	Mr.S.SELVAM	Assistant Professor (Gr-II)	ECE	selvam@avit.ac.in
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in

	COMPUTER	Category	L	Т	Р	Credit
17MECC12	INTEGRATED MANUFACTURING	EC(OE)	3	0	0	3

### Preamble

The students completing this course are expected to understand the nature and role of computers in manufacturing. The course includes computer aided design, fundamentals of CNC machines, programming of CNC machines, group technology, computer aided process planning techniques, shop floor control and flexible manufacturing systems. It exposes the students to various current trends followed in the industries.

### **Prerequisite: NIL**

Cours	se Objec	tive														
1	To und	erstand	d the i	mpor	tance	of CA	D and	I CAN	1							
2		To enable student to learn about Solid modelling techniques and various graphics standards in CAD														
3	To und	To understand about the fundamentals and programming of CNC machines														
4	To gair	To gain knowledge about GT and CAPP														
5	To enal	ole stu	dents	to lea	rn abo	out FN	IS and	1 SFC								
Cours	se Outco	omes:	On th	e suc	cessfu	ıl com	pletic	on of t	he co	urse,	stude	ents wi	ll be a	able to	)	
CO1.	Discu	ss the	basic	conce	epts of	f Com	puter	Aided	Desig	gn and	l Mar	ufactu	ring	App	у	
CO2.	Apply	Apply the concept of Modeling techniques for designing the products       Apply the concept of Modeling techniques for designing the products													Apply	
CO3.	Discu mach		basics	s, wor	king p	princip	oles of	f vario	ous coi	mpon	ents o	f CNC		App	у	
CO4.		the C ent op			ns for	vario	us me	chanic	cal con	npone	ents w	vith		App	у	
CO5.	Apply	y the couter a	oncep	ts of (					liscus	s the c	once	pts of		App	у	
CO6	Analy		funct	ions o	of vari	ious co		-	of Sho	p Flo	or Co	ntrol a	nd	Anal	yze	
Марр	oing with	n Prog	ramn	ne Ou	itcom	es and	l Prog	gramı	ne Sp	ecific	Outo	comes				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO3	
CO1	М	L	-	-	-	-	-	-	-	-	-	-	Μ			
CO2	S	М	L	-	_	-	-	-	-	-	-	-	М			
CO3	S	М	L	-	-	-	-	-	-	-	-	-	М			

CO4	S	S	М	L	-	-	-	-	-	М	-	-	М	
CO5	S	S	S	М	-	-	-	-	-	М	-	-	М	
CO6	S	S	S	М	S	-	-	-	-	S	-	-	М	

### S- Strong; M-Medium; L-Low

### Syllabus

# **INTRODUCTION TO CAD/CAM**

The design process - Morphology of design, Product cycle - Computer Aided Design, Benefits of CAD. Role of computers - principles of computer graphics - Current trends in manufacturing engineering - Design for Manufacturing and Assembly - Sequential and concurrent engineering -Rapid prototyping.

## SOLID MODELING

Graphic software: coordinate representation- graphic functions, software standards. Graphical Kernel system (GKS) - Initial graphics exchange system (IGES) - Graphic packages. Geometric Modeling - Wire frame, Surface and Solid models - Constructive Solid Geometry (CSG) and Boundary Representation (B-REP) Techniques - Features of Solid Modeling Packages.

# FUNDAMENTALS OF CNC MACHINES

CNC Technology - Functions of CNC Control in Machine Tools - Classification of CNC systems - Contouring System - Interpolators, open loop and closed loop CNC systems - CNC Controllers, Direct Numerical Control (DNC Systems). - Work holding devices and tool holding devices-Automatic Tool changers. Feedback devices - Principles of Operation-Machining Centers - Tooling for CNCmachines

Numerical control codes - Standards - Manual Programming - Canned cycles and subroutines - Computer Assisted Programming, CAD / CAM approach to NC part programming - APT language, machining from 3D models.

# GROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING

Introduction to CIM and its related activities-History of group technology- role of G.T. in CAD/CAM integration - part families - classification and coding - DCLASS and MICLASS and OPITZ coding systems-facility design using G.T. - benefits of G.T. - cellular manufacturing. Process planning - role of process planning in CAD/CAM integration - approaches to computer aided process planning - variant approach and generative approaches - CAPP and CMPP process planning systems.

## SHOP FLOOR CONTROL AND INTRODUCTION OF FMS

Shop floor control-phases-factory data collection system -automatic identification methods- Bar code technology-automated data collection system. FMS-components of FMS - types -FMS workstation -material handling and storage systems- FMS layout -computer control systems-application and benefits.

#### **Text Books**

1

Mikell.P.Groover "Automation, Production Systems and Computer Integrated

	manufacturing", Pea	rson Education 2001.											
2	-	ıbramanyan.S. and Ra ) Ltd., New Delhi, 20	5	IM", 2nd Edition New									
Refer	erence Books												
1	Yoremkoren, "Computer Integrated Manufacturing System", McGraw-Hill, 1983.												
2	Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International, 1986.												
3	David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.												
4	Roger Hanman "Cor	nputer Integrated Mar	nufacturing", Addison	u – Wesley, 1997.									
Cours	se Designers												
S.No	Designation     Department / College     Email id												
1	J.SATHEES BABU Associate Professor Mech / VMKVEC jsathees@gmail.com												
2	M.SARAVANAN	Assistant Professor	Mech / VMKVEC	msaravanan94@gmail.com									

17R	TSE05		NDUG	TDIAT	<b>XX7 A G</b>	TE M		GEMEN		Category	7	L	Т	Р	Credit
170	15205	1	NDUS	IKIAI	J WAS		ANA	JENIEN		EC(OE	)	3	0	0	3
PREAM		provid	a an 01	vorviouv	ofma	nagame	nt too	hniques f	for ind	uctrial w	vastas	ac wall	as State	and Cer	otrol
								course wi							
								entally su							
	EQUISI							j ~·			8-				
NIL															
COUR	SE OBJ	ECTIV	/ES												
1	To dis	cuss the	e prese	nt scena	ario of	industr	ial wa	ste mana	gemen	nt in Indi	ia				
2							chara	cteristics	of var	rious inc	lustrial	wastes	and		
-	strateg	gies for	its pre-	vention	and co	ontrol									
3															
4	To outline the various effects and disposal options for the industrial waste.														
5				enance	of haz	ardous	waste								
	SE OUT														
After th	e succes	sful co	mpletio	on of the	e cours	se, learr	er wil	ll be able	to						
			•	nto the	polluti	on fron	ı majo	or industri	ies inc	luding t	he sour	rces and	1 1	Jndersta	nd
characte	eristics o	of pollut	ants												
CO2: Id	lentify th	ne plan	minim	ization	of indu	ustrial w	vastes						I	Jndersta	nd
CO3: II	lustrate	the faci	lities fo	or the p	rocessi	ing and	reclar	nation of	indust	trial was	te wate	er	1	Apply	
CO4: C	orrelate	the var	ious tre	eatment	s for d	isposals	of in	dustrial w	vaste.				1	Analyse	
CO5: E	xamine	the phy	sio che	mical t	reatme	nt for h	azardo	ous waste	e.				1	Analyse	
COS	PO1	PO2	PO	PO4	PO	PO6	PO	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3
CO1	М	-	-	М	L	М	S	-	-	М	-	М	-	-	Μ
CO2	М	I	-	М	L	М	Μ	-	-	S	L	М	-	-	-
CO3	S	S	-	-	L	-	-	-	-	-	L	М	-	-	-
	Μ	М	Μ	М	М	М	Μ	-	М	М	М	М	-	-	-
CO4	М	Μ	Μ	-	Μ	М	-	S	-	L	М	М	-	-	-
CO5	ng; M-M														

# INTRODUCTION TO INDUSTRIAL POLLUTION

Types of Industries And Industrial Pollution, Characteristics Of Industrial Wastes, Population Equivalent, Bioassay Studies, Effects Of Industrial Effluents On Streams, Sewer, Land, Sewage Treatment Plants And Human Health Environmental Legislations Related to Prevention And Control Of Industrial Effluents And Hazardous Wastes

### **CLEANER PRODUCTION**

Waste Management Approach, Waste Audit, Volume And Strength Reduction, Material And Process Modifications, Recycle, Reuse And Byproduct Recovery – Applications.

## POLLUTION FROM MAJORINDUSTRIES

Sources, Characteristics, Waste Treatment Flow Sheets For Selected Industries Such As Textiles, Tanneries, Pharmaceuticals, Electroplating Industries, Dairy, Sugar, Paper, Distilleries, Steel Plants, Refineries, Fertilizer, Thermal Power Plants, Wastewater ReclamationConcepts

#### TREATMENT TECHNOLOGIES

Equalisation, Neutralisation, Removal of Suspended and Dissolved Organic Solids, Chemical Oxidation, Adsorption, Removal of Dissolved Inorganics, Combined Treatment Of Industrial And Municipal Wastes, Residue Management, Dewatering, Disposal.

### HAZARDOUS WASTE MANAGEMENT

Hazardous Wastes, Physico Chemical Treatment, Solidification, Incineration, Secure Land Fills.

#### **TEXT BOOKS:**

1. Rao M. N. & Dutta A. K. "Wastewater Treatment", Oxford - IBH Publication, 1995.

2. Eckenfelder W.W. Jr., "Industrial Water Pollution Control", McGraw Hill Book Company, New Delhi, 2000.

3. Patwardhan. A.D., Industrial Wastewater Treatment", Prentice Hall of India, New Delhi2010.

## **REFERENCES:**

1. Shen T.T., "Industrial Pollution Prevention", Springer, 1999.

- 2. Stephenson R.L. and Blackburn J.B., Jr., "Industrial Wastewater Systems Handbook", Lewis Publisher, New York, 1998
- 3. Freeman H.M., "Industrial Pollution Prevention Hand Book", McGraw Hill Inc., New Delhi, 1995.
- 4. Pandey, "Environmental Management" Vikas Publications, 2010.
- 5. Industrial Wastewater Management, Treatment and Disposal",(WEF MOP FD3) McGraw Hill,2008

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. Chozhavendhan	Associate professor	Biotechnology	chozhavendhan@avit.ac.in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

17BMEC04	MEMS AND ITS BIOMEDICAL APPLICATIONS	Category	L	Т	Р	Credit
		EC(OE)	3	0	0	3

To enable the students to acquire knowledge about the principles and applications of MEMS & Nanotechnology in Biomedical Industry.

PRER	PREREQUISITE – NIL														
COUR	COURSE OBJECTIVES														
1	To un	derstan	d the w	orking	principl	e of M	EMS &	Micros	systems	•					
2	To un	derstan	d the w	orking	of MOI	EMS Te	chnolo	gy.							
3	3 To give an insight to the microfluidic systems.														
4 To give an insight to the Bio-MEMS & its application in healthcare.															
5 To study about the biomedical Nanotechnology & its application in research domain.															
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will t	be able	to						
CO1.	Discus	s the c	oncept	s of mi	croflui	dic sys	tems.						U	Inderstar	ıd
CO2.	Explai	n abou	t the ba	asics of	f worki	ng of N	MOEM	IS Tecl	nnolog	у.			U	Understand	
CO3.	Illustra	te the v	vorking	g princi	iple of	MEMS	5 & Mi	icrosys	tems.				А	pply	
CO4. Analyze the nanomaterial in various biomedical applications. Analyze															
<b>CO5.</b> Evaluate about the biomedical Nanotechnology & its application in research domain. Evaluate															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
<b>G</b> 0 1													1		

CO1       M           L        M             CO2       M        L        L        L        M </th <th></th>															
CO3         S         M         M            M          S         M         M         M	CO1	М								L	 	М			
	CO2	М		L						L	 	М	М		
CO4         S         S         M         L         M         M         M         M           S         M         M         S	CO3	S	М	М						М	 	S	М	М	М
	CO4	S	S	М	L	М	М	М	М	М	 	S	М	М	S
CO5         S         S         M         M         S         M         S         M           S         M         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S         S <td>CO5</td> <td>S</td> <td>S</td> <td>S</td> <td>М</td> <td>М</td> <td>S</td> <td>М</td> <td>S</td> <td>М</td> <td> </td> <td>S</td> <td>М</td> <td>S</td> <td>S</td>	CO5	S	S	S	М	М	S	М	S	М	 	S	М	S	S

S- Strong; M-Medium; L-Low

## SYLLABUS

## MEMS & MICROSYSTEM

MEMS and Microsystems-Introduction-Typical MEMS and Microsystem Products-Application of Micro- system in Healthcare Industry – Working Principles of Microsystems Micro-sensors – Micro-actuation – MEMS with Microactuation – Micro-accelerators.

# MICRO-OPTO ELECTROMECHANICAL SYSTEMS (MOEMS)

Fundamental principle of MOEMS Technology, Advantages - Light Modulators, Beam splitter – Micro-lens, Micromirrors - Digital Micro-mirror Device, Grating Light Valve, Optical Switch, Waveguide and Tuning

## MICROFLUIDIC SYSTEMS

Microfluidics - Introduction and Fluid Properties, Applications of MFS-Fluid Actuation Methods - Electrophoresis, Dielectrophoresis, Electrowetting, Optoelectrowetting, Electro osmosis Flow, Electrothermal Flow, Thermocapillary Effect – Microfluidic Channel – Microdispenser – Microneedle - Microfilter

# BIOMEMS

Introduction to BioMEMS, BioMEMS for Clinical Monitoring, Lab on a chip, DNA Sensors, E-Nose, E-Tongue, Microsystem approaches to PCR, MEMS based Implantable Drug Delivery System, Emerging, BioMEMS Technology.

## **BIOMEDICAL NANOTECHNOLOGY**

Introduction to nanoscale phenomena, Nanoparticles - Nanomaterial characterization – XRD, SAXS, TEM, SEM, Scanning Tunneling microscopy, AFM, SPM technique, Biomolecular sensing for cancer diagnostics using carbon nanotubes, Carbon nanotube biosensors, Magnetic nanoparticles for MRImaging, Nano-devices biomedical applications.

## **TEXT BOOKS:**

- 1. Tai-Ran Hsu, "MEMS & Microsystems- Design, Manufacture and Nanoscale Engineering", John Wiley & Sons, 2nd Edition, 2008.
- 2. Nitaigour Premch and Mahalik, "MEMS", Tata McGraw Hill, 2nd Reprint2008.
- 3. Wanjun Wang & Steven A. Soper, "BioMEMS Technologies and applications", CRC Press, First Edition2007.

## **REFERENCES:**

- 1. Steven S. Saliterman, **"Fundamentals of BioMEMS & Medical Microdevices"**, International Society for Optical Engineering, 1st Edition2006.
- 2. Gerald A Urban, "BioMEMS", Springer, 1st Edition2006.
- 3. Abraham P. Lee and James L. Lee, **"BioMEMS and Biomedical Nanotechnology"**, Volume-I, Springer, 1st Edition, 2006.

0001				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. M.Ravindiran	Professor & Head	BME	ravindiran@avit.ac.in
2	Mr. R. Ezhilan	Assistant Professor	BME	ezhilan@vmkvec.edu.in
3	Mr.S.Kannan	Assistant Professor	BME	kannan@vmkvec.edu.in

17CVEC14	AIR POLLUTION	Category	L	Т	Р	Credit
1/0/2014	MANAGEMENT	EC(OE)	3	0	0	3

# Preamble

The course work offers the basic knowledge on various sources of air pollutants and their possible effects local, regional and global environment. It provides various techniques for sampling and analyzing the pollutants. Also, it deals with the principles and design of control of particulate/gaseous air pollutants and its emerging trends to fulfil the legal aspects of air pollution to have a sustainable environment for future generation.

### Prerequisite

NIL

## **Course Objectives**

1. About noise pollution and the methods of controlling the same.

- 2. The student is expected to know about source inventory and control mechanism.
- 3. To impart knowledge on the sources, effects
- 4. The control techniques of air pollutants and noise pollution
- 5. The sources, characteristics and effects of air

**Course Outcomes** 

On the successful completion of the course, students will be able to

CO1. Identify the sources of air pollution, impacts of air pollutants and their measurements	apply
CO2. identify the significance of meteorological factors in pollutants dispersion and to predict the pollutant concentration	apply
CO3. Suggest preventive and control measures for air pollution.	apply
CO4. Suggest locations for industries and appropriate city planning tips for the effective air pollution management of a city	apply
CO5. Suggest remedies for the possible effects of air pollution on local, regional and global environment.	Apply

Suppling with 110grumme Outcomes and 110grumme Specific Outcomes															
СО	РО	PO1	PO1	PO1	PSO	PSO	PSO								
S	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	М	L	L		L		L					-	-	-
CO2	S	М	L	L	L	М		L		L	L		-	-	-
CO3	S	М	L	L	L	М		L		L			-	-	-
CO4	S	М	М	S	L			L		L		L	L	-	-
CO5	S	М	М	S				М		М	L		-	-	-

# Mapping with Programme Outcomes and Programme Specific Outcomes

S- Strong; M-Medium; L-Low

Syllabus

UNIT – I	SOURCES AND EFFECTS OF AIR POLLUTANTS	9 – hours
Classification	n of air pollutants – Particulates and gaseous pollutants – Sources of air pollu	ution – Source
inventory – H	Effects of air pollution on human beings, materials, vegetation, animals – glo	obal warming-
ozone layer d	lepletion, Sampling and Analysis – Basic Principles of Sampling – Source and	nd ambient
sampling – A	analysis of pollutants – Principles.	
UNIT – II	DISPERSION OF POLLUTANTS	9 – hours
Elements of a	atmosphere – Meteorological factors – Wind roses – Lapse rate – Atmosphere	ric stability and
turbulence -	Plume rise – Dispersion of pollutants – Dispersion models – Applications.	
UNIT – III	AIR POLLUTION CONTROL	9 – hours
Concepts of	control – Principles and design of control measures – Particulates control by	gravitational,
centrifugal, f	iltration, scrubbing, electrostatic precipitation – Selection criteria for equipm	nent – gaseous
pollutant con	trol by adsorption, absorption, condensation, combustion - Pollution control	l for specific
major industr	ies.	
UNIT – IV	AIR QUALITY MANAGEMENT	9 – hours
Air quality st	andards – Air quality monitoring – Preventive measures – Air pollution con	ntrol efforts –
Zoning – To	wn planning regulation of new industries – Legislation and enforcement – En	nvironmental
Impact Asses	ssment and Air quality	
UNIT – V	NOISE POLLUTION	9 – hours
Sources of no	bise pollution – Effects – Assessment – Standards – Control methods – Preve	ention

#### **Text Books**

- 1. Anjaneyulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.
- 2. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996

## **Reference Books**

1. W.L.Heumann, Industrial Air Pollution Control Systems, McGraw-Hill, New Yark, 1997

2.Mahajan S.P., Pollution Control in Process Industries, Tata McGraw-Hill Publishing

Company, New Delhi, 1991.

## **CourseDesigners:**

S.No.	Name of the Faculty	E-Mail ID
1	A.Fizoor Rahman	fizoorr@gmail.com
2	M.Senthilkumar	Senthilkumar@vmkvec.edu.in
3	C.Nivetha	nivetha.c@avit.ac.in

17BTPI05	INDUSTRIAL BIOSAFETY	Category	L	Т	Р	Credit
		EC(OE)	3	0	0	3

Industrial biosafety deals with the microbial hazards caused to an individual and to the society. In the subject the learners could grasp the knowledge on biosafety levels and the roles of various regulatory committees in avoiding the risk. Biosafety often use pioneering techniques along with other applied fields of research like biotechnology, genetic engineering, biochemistry to study microbes and their complex mechanisms. Knowledge of these principles will enable practice well in handling pathogenic microorganisms carefully in thelaboratory.

# PREREQUISITE - NIL

COURS	SE OBJ	ECTIV	/ES												
1	To re	To recognize the basic knowledge on biosafety levels.													
2	To di	To discuss various hazards caused by the GMOs.													
3	To cl	assify t	he role	of reg	gulator	ry con	mittee	es in c	ontrolli	ng the	risk				
4	Το οι	utline th	e risk	involv	ved in	using	GMO	s and I	LMOs.	-					
5	To de	esign th	e biosa	afety p	roced	ure in	lab an	d resea	arch ins	stitutior	ns on ha	ndling	pathoge	enic	
	micro	oorganis	sms.												
COURS	SE OUI	COM	ES												
After th	e succes	sful co	mpleti	on of t	he cou	urse, le	earner	will b	e able t	0					
CO1: R	ecall the various biosafety levels.								Remember						
CO2: E	xplain th	ne vario	us bio	safety	guide	lines								Understa	nd
CO3: Id	entify th	ne role (	of regu	ılatory	comn	nittees	in co	ntrolli	ng the r	isk				Understa	nd
CO4: A	nalyze t	he risk	involv	ed in ı	using (	GMOs	and L	MOs	produc	ts				Analyse	
CO5: D	ifferenti	ate the	variou	s safet	y proc	cedure	s follo	wed in	n variou	us indus	stries.			Analyse	
COS	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO 1	PSO2	PSO3
CO1	L	L	L	L	-	-	-	-	-	L	-	L	-	-	-
CO2	М	М	-	М	-	-	-	-	-	-	L	L	-	-	-
CO3	S	-	Μ	L	М	-	-	L	-	-	-	-	-	-	-
CO4	L	L	L	L	L	-	S	Μ	-	-	-	М	-	-	-
CO4		T	T		L	-	-	-	-	-	-	-	М	_	-

# SYLLABUS

## PRINCIPLES OF BIOSAFETY

Introduction, Historical Background, Introduction to Biological Safety Cabinets, Primary Containment for Biohazards, Biosafety Levels, Biosafety Levels of Specific Microorganisms, Biosafety guidelines - Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

## BIOSAFETY IN BIOTECHNOLOGY INDUSTRIES

Hazard assessment, Use of genetically modified organisms & their release in environment; special procedures for rDNA based product production (Vaccine and Insulin); Biosafety in laboratory, Laboratory

# PRINCIPLES OF BIOSAFETY

Introduction, Historical Background, Introduction to Biological Safety Cabinets, Primary Containment for Biohazards, Biosafety Levels, Biosafety Levels of Specific Microorganisms, Biosafety guidelines - Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

# **BIOSAFETY IN BIOTECHNOLOGY INDUSTRIES**

Hazard assessment, Use of genetically modified organisms & their release in environment; special procedures for rDNA based product production (Vaccine and Insulin); Biosafety in laboratory, Laboratory

associated infections and other hazards; Prudent biosafety practices in laboratory

# **BIOSAFETY – REGULATORY FRAMEWORKS**

Biotechnology and bio-safety concerns at the level of individuals, institutions, society, region, country and world. Regulatory framework in India governing GMOs-Recombinant DNA Advisory Committee (RDAC), Institutional Biosafety Committee (IBC), Review Committee on Genetic Manipulation, Genetic Engineering Approval Committee (GEAC), State Biosafety Coordination Committee (SBCC), District Level Committee (DLC). Rules for the manufacture, use/import/export and storage of hazardous microorganisms/genetically engineered organisms or cells.

# RISK ASSESMENT

Definition of GMOs & LMOs, GMO applications in food and agriculture, Risk Analysis, Risk Assessment, Risk management and communication Risk assessment in various industries- pharmaceuticals, food and beverages etc., steps towards minimizing the risk operations in industries.

# SAFETY AND BIOSAFETY - CASE STUDIES

Recommended Biosafety Levels for Infectious Agents and Infected Animals, Rules and regulation for handling of microbes in laboratory purposes, lab construction procedure, decontamination and discarding procedure of laboratory used microorganisms. Case studies -swine flu spreading, Bhopal tragedy etc.,

## TEXT BOOKS:

1. R.C. Dubey., 2014. A Text Book of Biotechnology Fifth Revised *Edition*, S.ChandPublications

2. Anupam Singh, Ashwani Singh, 2012. Intellectual property rights and Bio-Technology (Biosafetyand Bioethics), Published by Bio-Green Books, NewDelhi.

3. Mueller, M.J., "Patent Law", 3rd Edition, Wolters Kluwer Law & Business, 2009.

Associate professor

Assistant professor

## **REFERENCES:**

3

1. V Sreekrishna, 2017. Bioethics and Biosafety in Biotechnology by New ageInternationalpublishers. Sateesh, M.K., 2008. Bioethics and Biosafety, IK International Publishers.

COUR	COURSE DESIGNERS							
S.No.	Name of the Faculty	Designation	Department					
1	Dr. Chozhavendhan.S	Associate professor	Biotechnology					

# COUDER DEGLENE

Dr. B. Prabasheela

Mr.N.Jawahar

Mail ID

Biotechnology

Biotechnology

chozhavendhan@avit.ac.in

prabasheela@avit.ac.in

jawahar@vmkvec.edu.in

			GR	REEN B	BUILD	ING A	ND SU	STAIN	ABLE	(	Category	L	Т	Р	Credi
17BT	TEC29				EN	VIRON	IMENT	Г			EC(OE)	0	3		
PREA	MBLE											I			
		-				-		-	on the	basics of	f green b	uilding, I	learning t	he plan	
	s of HV			ling, en	ergy ef	ficientr	nodelliı	ng.							
PRER	EQUIS	SITE –	NIL												
COLID	RSE OB	IECT	NES												
				0 D1	.1 1	· '1 C	<b>T</b> 1								
	To defin		_				_			1 1					
						_				lding ele	ctric wir	ing.			
	To demo					_		_							
									systems	•					
5 T	To asses	s the ke	ey comp	ponents	of rem	odellin	g projec	et.							
COUR	RSE OU	TCON	<b>IES</b>												
On the	success	sful cor	npletio	n of the	course	, studer	nts will	be able	to						
CO1. I	nterpret	the ba	sics of g	green b	uilding									Un	derstand
	Explain			-	-	of greer	ı buildi	ng prac	tices					Un	derstand
	-		-			-				nercial b	uildings			1	Apply
CO4. I	Develop	proper	water	conserv	ation s	ystems	to mak	e up a h	ealthy l	building				1	Apply
CO5. A	Analyse	the gre	en sust	ainable	materia	als and	practic	es						А	nalyze
MAPP	PING W	/ITH P	ROGR	RAMM	E OUI	COM	ES ANI	D PRO	GRAM	IME SPI	ECIFIC	OUTCO	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO3
														2	
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	М	Μ	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	Μ	Μ	-		L	-	-	-	-	-	-	S	-	-	-
CO4	М	Μ	-	-	S	-	L	-	-	-	-	-	-	-	-
CO5	М	Μ	L	L	S	S	-	L	-	-	-	-	Μ	М	М
	ng; M-l	Mediun	n L-Lo	W											

# GREEN BUILDING BASICS AND PRACTICES:

Site Design / Development & Plan Implementation, Resource Efficiency, Energy Efficiency, Water Efficiency, Indoor Environmental Quality and Homeowner Education, Operation, Maintenance & Practices. Assessment of building design and construction, emission of CO2, SO2, and NO2 of building materials, elements, and construction process.

# ENERGY MANAGEMENT SYSTEM OF BUILDINGS

The objective of the course is to provide students the necessary tools to control, monitor and optimize the building's facilities, mechanical and electrical equipment for comfort, safety, and efficiency. It starts with the fundamentals of electric power systems and building electric wiring and then works through building automation systems (BAS) principles. The course allows students to acquaint applying BAS to commercial HVAC equipment, lighting systems, fire systems and security/observationsystems.

# LOW ENERGY ARCHITECTURE, PASSIVE BUILDING DESIGN

Solar geometry, climate/regional limitations, natural lighting, passive design and sustainability initiatives, insulating and energy storing material. Bioclimatic design and concepts. Case studies will be used extensively as a vehicle to discuss the success/failure of ideas and their physical applications.

# WATER MANAGEMENT, BUILDING METHODS & MATERIALS

Water conservation, water management systems, water efficient landscaping, green roofing, rainwater harvesting, sanitary fixtures and plumbing systems, wastewater treatment and reuse, and process water strategies. AAC (Aerated Autoclave Concrete), ICF (Insulated Concrete Forms), new Advanced Framing & Insulation Techniques, SIPs (Structural Insulated Panels), Straw Bale and Pumice-crete Rammed Earth, Timber Frame, Straw Clay, and Earth ship buildings.

# ENERGY EFFICIENT REMODELLING

Key components of remodelling projects-windows, walls, roofs, heating and ventilation, insulation, tighten up the building envelope, Advances in building technology and materials, incorporate active and passive solar into the home or commercial building, Mistakes to avoid, various improvements cost

# **TEXT BOOKS:**

- 1. Kibert, C.J. "SustainableConstruction:GreenBuildingDesignandDelivery," SecondEdition, NewYork: John Wiley & Sons, Inc., 2008.
- 2. Thermal analysis and design of passive solar buildings by A. K. Athienitis and MatSantamouris.
- 3. Passive building desing by N.K. Bansal, G. Hauser, and G.Minke.

## **REFERENCES:**

1. McDonough, W. and Braungart, M. "Cradle to Cradle: Remaking the Way We Make Things," New York: Farrar, Straus and Giroux, 2002

S.No	Name of the Faculty	Designation	Department	Mail ID			
1	Dr.S.P.Sangeetha	Professor & Head	Biotechnology	sangeetha@avit.ac.in			
2	Ms.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in			

		Category	L	Т	Р	Credit
17CSPI01	PROJECT WORK	PI	0	0	18	9

This course enables the students to exercise some of the knowledge and/or skills developed during the programme to new situation or problem for which there are number of engineering solutions. This course include planning of the tasks which are to be completed within the time allocated, and in turn, helps to develop ability to plan, , use, monitor and control resources optimally and economically. By studying this course abilities like creativity, imitativeness and performance qualities are also developed in students. Leadership development and supervision skills are also integrated objectives of learning this course.

### **PREREQUISITE** – NIL

# COURSE OBJECTIVES

1	To develop quality software solution.						
2	2 To involve in all the stages of the software development life cycle like requirements engineering, systems analysis, systems design, software development, testing strategies and documentation.						
3	To understand and gain the knowledge of the principles of software engineering practices.						
4	To Get good exposure and command in one or more application areas and on the software.						
5	5 To participate and manage a large software engineering projects in future.						
COUR	COURSE OUTCOMES						
On th	ne successful completion of the course, students will be able to						

1. Describe the Systems Development Life Cycle (SDLC).	Apply
2. Design of Modules.	Apply
3. Perform coding.	Apply
4. Analyze and Apply various types of testing techniques and prepare documentation.	Apply

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

					1										
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	S	М	-	-	S	-	S	-	М	М	М
CO2	S	S	М	М	S	М	-	-	S	-	М	-	S	S	S
CO3	L	М	L	L	М	М	-	-	М	-	L	-	М	М	М
CO4	S	S	М	L	S	М	-	-	S	-	S	-	М	М	М
1															

S- Strong; M-Medium; L-Low

• Not more than one student is permitted to work on aproject.

- Each Student should be involved in each and every phase of Project Development. If it is found that student is not involved in any phase; for example coding phase, it may lead to the rejection/disqualifying of the project at any stage.
- Title of the project should be kept the same throughout theproject.

### **Guidelines for preparing the Project Dissertation**

This document lists the contents required for the academic project report done as part of the MCA Curriculum. Section names have been listed with description. The descriptions have been provided in italics. Important: This page and the text in italics present throughout this document are to give you guidance. Please do not include them in your projectreport.

#### Work allocation matrix:

Prepare work allocation matrix along with provision of follow-up remarks and notes.

#### **Project execution:**

Execute project preparation activities as per work allocation matrix.

### **Documentation and presentation:**

Documentation of final project report which includes following in sequence.

- a. Title page-(Suggested as perAnnexure-II.)
- b. Certificate -As perAnnexure-III.
- c. Index.
- d. Preface/Acknowledgement.
- e. Courseoutcomes.
- f. Projecttitle.
- g. Assembly and detail productiondrawings.
- h. List of activities (suggested as per Annexure IV) and work allocationmatrix.
- i. Plant layout withdimensions.
- j. List and specifications of machineries, equipments andtools.
- k. Bill of material with make or buy decision.
- 1. Specifications of bought outparts.
- m. Process sheets-As per format given in course Industrialengineering.
- n. Flow processcharts.
- o. Specification and consumption of consumables.
- p. Details of inspection / testing carriedout.
- q. Details of rework / rectifications carried out.
- r. Costestimation.
- s. Monitoring and controlreport/sheet.
- t. Notes ontroubleshooting.
- u. Notes on individual achievement of skills / experience /problems / solutions.
- v. References.
- w. Day to day logbook as perAnnexure-V.
- x. Presentation including moments at work-video/photographs inaction

Prepare pro	pject report with N	S Office with following guidelines.
	PAGE:	A4 (ON ONESIDE).
	MARGINN:	TOP :15mm.
		BOTTOM :15mm.
		RIGHT :15mm.
		LEFT :30mm.
	FONT:	ARIAL.
	SIZE:	12-BOLD, CONTENT12,
		SPACING 18 POINTS,
	HEADER:	TITLE OF THE PROJECT,
		PAGE NUMBER ON TOP
		RIGHT.
	FOOTER:	ACADEMIC YEAR, SHORT
		NAME OF THEINSTITUTE
SUGGESTED LI	EARNING RESC	URCES.
	i. ii. iv. v. v. vi. vii. vii. ix.	Use ofLibrary. Referencebooks. Handbooks. Encyclopedia. Magazines. Periodicals. Journals. Visits of industry, organizations related as per therequirement. Internet.

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Nithya	Professor	CSE	hodcse@vmkvec.edu.in
2	Dr.S.Rajaprakash	Associate professor	CSE	rajaprakash@avit.ac.in.

17CSPI02	INTERNSHIP	Category	L	Т	Р	Credit
		PI	0	0	0	3

The Engineering Internship course is a Canvas-based course that offers students the opportunity to explore and develop their careers through professional practice. The structured plan of education impacts student work readiness through a number of professional development skill-building activities, including goal setting; analysis and reflection; feedback from employer; informational interviewing and debriefing their experience.

## **PREREQUISITE – NIL**

### **COURSE OBJECTIVES**

1	An understanding of how liberal arts coursework ties to professional careers of interest.
2	Gain insight into a possible career path of interest while learning about the industry in which the organization resides, organizational structure, and roles and responsibilities within that structure.
3	Develop professional connections and identify a strategy for maintaining those connections
4	Identify and articulate next steps in their career trajectory.

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Add details about your experience including new skills developed and results obtained .	Understand
CO2. Analyze your internship experience, reflecting on lessons learned and how your liberal arts education prepared you for the internship.	Apply
CO3. Identification of additional skills that will need to be developed to ensure career readiness.	Apply

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	1	1													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	S	L	S	-	L	L	S	L	S	-	М	М	М
CO2	S	S	М	М	S	М	L	L	М	М	М	-	S	S	S
CO3	L	М	М	L	М	М	L	L	М	L	L	-	М	М	М
0 0	171	1 1'	тт												

S- Strong; M-Medium; L-Low

### **General Procedure**

### Final Reflection Report:

### I. <u>General InformationSection</u>

Explain your role and how your work contributed to the company

### II. <u>TechnicalSkills</u>

Document the technical experiences you had during your work experience and discuss technical problems that you assisted in solving

#### III. Development of ProfessionalSkills

Describe team and leadership building opportunities on the job

## IV. Assessments

- Discuss whether or not you met goals set out by your supervisor or that you set foryourself
- Evaluate your performance of assigned projects, noting both areas of strength and improvement

## V. <u>Conclusion</u>

- Summarize by addressing the impact of the work experience on your education and careergoals
- Provide two "lessons learned" to share with any student that is considering aninternship

Course Designers:								
S.No.	Name of the Faculty	Designation	Department	Mail ID				
1.	Dr.M.Nithya	Professor	CSE	hodcse@vmkvec.edu.in				
2.	Dr.S.Rajaprakash	Associate professor	CSE	<u>rajaprakash@avit.ac.in</u> .				

17CS	17CSPI03		BUSINESS INTELLIGENCE AND ITS APPLICATIONS								Categor	y L	Т	Р	Credit
					APP	LICAT	IONS				PI	3	0	0	3
Busine		U	· /			-	0			nd practitionable			. 0		•
PRER	EQUIS	ITE – I	NIL												
COUR	RSE OB	JECTI	VES												
1	To Int	roduce	student	ts to va	rious bu	siness	intellig	ence co	ncepts						
2	To lea	arn the o	concept	s of dat	a integr	ration u	sed to a	levelop	intellig	ent syste	ms for d	ecision s	upport		
3	To int	roduce	visualiz	zation t	ool for	prepare	the en	terprise	reporti	ng					
4	To lea metho		ytical c	ompon	ents and	l techno	ologies	used to	create	dashboar	ds and so	corecard	s, data/te	ext/Web	mining
4			insights	s into o	rganizat	tional o	peratio	ns in im	plemen	tation of	systems	for Busi	ness Int	elligenc	e (BI)
COUR	SE OU	TCON	IES												
	he succe			on of th	ne cours	e, stude	ents wil	l be abl	e to						
			•							develop	ment		Unde	erstand	
CO2. C	Gained a	in unde	rstandir	ng of ho	w busin	ness pro	ofession	nals can	use and	alytics te port deci	chniques		Anal	yze	
CO3 /	Apply C	luctorin	a Asso	ciation	and Cl	assifica	tion tec	hnique	s for Da	ta Integr	ation		Appl	у	
			-										Appl	у	
CO5. I	Develop	system	s to me	asure, 1	nonitor	and pr				ve analys riables ar		mance	Appl	У	
	ors for l PING W				• •		S ANI	PRO(	GRAM	ME SPE	CIFIC (	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
CO1	S	М	L	-	М	-	-	-	-	-	-	М	S	М	M
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	M	M
CO3	S	М	L	-	М	-	-	-	-	-	-	М	S	М	M
CO4	S	М	L	-	M	-	-	-	-	-	-	М	S	M	M
CO5	S	М	L	-	М	-	-	-	-	-	-	М	S	M	М
S- Stro	ng; M-N	Medium	l I I -I ou					<u> </u>							
	8,		, -												

# SYLLABUS INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

# **BASICS OF DATA INTEGRATION**

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration

approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

# INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

# BASICS OF ENTERPRISE REPORTING

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture– Enterprise Reporting using SSRS reporting service

# **BI ROAD AHEAD**

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

# TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India,2011

# REFERENCES

 Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.

2 David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.

3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mrs. S. Leelavathy	Assistant Professor(G-II)	CSE	leelavathy@avit.edu.in

17CS	17CSPI04		BUII	DING	ENTF	RPRIS	SE API	PLICA	TIONS	5	Catego	ry L	Т	P C	redit
			2011				/				PI	3	0	0	3
PREA	MBLE	2										I	11	I	
-	-	· -		-	-		-	-		-	-	-		e right ty or an ent	-
COU	RSE OI														
1	To te	ach the	studen	ts abou	t variou	is ways	to buil	ld enter	prise ap	oplicatio	ns				
2	At the platfo		letion c	of the cl	ass, the	y shou	ld unde	erstand	how to	deploy s	ystems t	o a numb	er of di	fferent h	ost
3	•		p graph	ical us	er inter	faces, a	s well	as chara	acter-or	iented so	creens. T	hey test a	and deb	ug their s	ystem
COU	 RSE OU	UTCON	MES												
On the	e succes	sful co	mpletio	n of the	e course	e, stude	nts wil	l be abl	e to						
			-							odeling.	1	Understa	nd		
				•	•		•			esign and	1				
	nent the					plaini	ing und	estima	.1011. DC	Jonghi und	1	Understa	nd		
			-	tance of	f applic	ation fi	amewo	ork and	designi	ing other	: 1	Apply			
	ation co Constru			differe	ent solu	tion lay	/ers					Apply			
	Perform		-			-		6							
					•							Apply	OMES		
											PECIFIC			-	1000
	PO1					PO6	PO7	PO8		PO10		PO12	PSO1		
CO1	S	М	М	М	М	-	-	-	М	-	Μ	-	S	М	М
CO2	S	Μ	М	М	М	-	-	-	М	-	-	-	S	М	М
CO3	S	-	М	М	М	-	-	-	М	-	-	М	S	-	M
CO4	S	М	S	М	S	-	-	-	S	М	М	М	S	М	М
	1	М	S	М	S	-	-	+	S	S	S	М	S	М	1

## Introduction

enterprise applications and their types, software engineering methodologies, life cycle of raising an enterprise application, introduction to skills required to build an enterprise application, key determinants of successful enterprise applications, and measuring the success of enterprise application

### **Incepting of enterprise applications**

Enterprise analysis, business modeling, requirements elicitation, use case modeling, prototyping, non functional requirements, requirements validation, planning and estimation

### Architecting and Designing enterprise applications

Concept of architecture, views and viewpoints, enterprise architecture, logical architecture, technical architecture-design, different technical layers, best practices, data architecture and design – relational, XML, and other structured data representations, Infrastructure architecture and design elements - Networking, Internetworking, and Communication Protocols, IT Hardware and Software, Middleware, Policies for Infrastructure Management, Deployment Strategy, Documentation of application architecture anddesign

### **Constructing of enterprise applications**

Construction readiness of enterprise applications - defining a construction plan, defining a package structure, setting up a configuration management plan, setting up a development environment, introduction to the concept of Software Construction Maps, construction of technical solutions layers, methodologies of code review, static code analysis, build and testing, dynamic code analysis – code profiling and codecoverage

### Testing and Rolling out enterprise applications

Types and methods of testing an enterprise application, testing levels and approaches, testing environments, integration testing, performance testing, penetration testing, usability testing, globalization testing and interface testing, user acceptance testing, rolling out an enterprise application.

### **TEXT BOOKS**

1. Raising Enterprise Applications – Published by John Wiley, authored by Anubhav Pradhan, Satheesha B. Nanjappa, Senthil K. Nallasamy, VeerakumarEsakimuthu

2. Building Java Enterprise Applications – Published by O'Reilly Media, authored by BrettMcLaughlin

## **REFERENCE BOOK**

1. Software Requirements: Styles & Techniques – published by Addison-WesleyProfessional

- 2. Software Systems Requirements Engineering: In Practice published by McGraw-Hill/OsborneMedia
- 3. Managing Software Requirements: A Use Case Approach, 2/e published byPearson
- 4. Software Architecture: A Case Based Approach published byPearson

COURSE DESIGNERS									
S.No.	Name of the Faculty	Designation	Department	Mail ID					
1.	Dr. S. Rajaprakash	Associate Professor	CSE	rajaprakash@avit.ac.in					
2.	Mr.M.Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in					

17CSPI05	INTERNET AND WED TECHNOLOGI	PI	3	0	0	3
17CSDI05	INTERNET AND WEB TECHNOLOGY	Category	L	Т	Р	Credit

This course is intended to teach the basics involved in publishing content on the World Wide Web. This includes the 'language of the Web' – HTML, the fundamentals of how the Internet and the Web function, a basic understanding of graphic production with a specific stress on creating graphics for the Web, and a general grounding introduction to more advanced topics such as programming and scripting.

# **PREREQUISITE** – NIL

# **COURSE OBJECTIVES**

1	To introduce basic concepts of internet						
2	To learn about HTML & XML						
3	To learn about internet security						
COUR	COURSE OUTCOMES						
On the	On the successful completion of the course, students will be able to						

CO1 . Analyze a web page and identify its elements and attributes.	Analyze
CO2. Create web pages using XHTML and Cascading Style Sheets.	Apply
CO3. Build dynamic web pages using JavaScript (Client side programming).	Apply
CO4. Create XML documents and Schemas	Apply
CO5. Build interactive web applications using JSP	Apply

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	М	-	-	М	S	М	М
CO2	S	М	L	-	М	-	-	-	М	-	-	-	S	М	М
CO3	S	М	L	-	L	-	-	-	М	-	-	L	S	М	М
CO4	S	M	L	-	М	-	-	-	М	-	-	-	S	М	М
CO5	S	М	L	-	М	-	-	-	М	-	-	L	S	М	М
S- Stro	ong; M-	Mediur	n; L-Lo	OW											

## INTRODUCTION TO INTERNET

Introduction, Evolution of Internet, Internet Applications, Internet Protocol -TCP/IP, UDP, HTTP, Secure Http(Shttp) Internet Addressing – Addressing Scheme – Ipv4 & IPv6, Network Byte Order, Domain Name Server and IP Addresses, Mapping . Internet Service Providers, Types Of Connectivity Such As Dial-Up Leaded Vsat Etc. Web Technologies: Three Tier Web Based Architecture; Jsp, Asp, J2ee, .Net Systems

# HTML CSS AND SCRIPTING

HTML – Introduction, Sgml, Dtd(Document Type Definition, Basic Html Elements, Tags and usages, HTML Standards , Issues in HTML Dhtml: Introduction Cascading Style Sheets: Syntax ,Class Selector, Id Selector Dom (Document Object Model) & Dso (Data Source Object) Approaches To Dynamic Pages: Cgi, Java Applets, Plug Ins, Active X, Java Script – Java Script Object Model, Variables-Constant – Expressions, Conditions- Relational Operators- Data Types – Flow Control – Functions & Objects-events and event handlers – Data type Conversion & Equality – Accessing HTML formelements

# XML

What is XML – Basic Standards, Schema Standards, Linking & Presentation Standards, Standards that build on XML, Generating XML data, Writing a simple XML File, Creating a Document type definition, Documents & Data ,Defining Attributes & Entities in the DTD ,Defining Parameter Entities & conditional Sections, Resolving a naming conflict, Using Namespaces, Designing an XML data structure, Normalizing Data, Normalizing DTDS

## **INTERNET SECURITY & FIREWALLS**

Security Threats From Mobile Codes, Types Of Viruses, Client Server Security Threats, Data & Message Security, Various electronic payment systems, Introduction to EDI,Challenges–Response System, Encrypted Documents And Emails, Firewalls: Hardened Firewall Hosts, Ip- Packet Screening, Proxy Application Gateways, Aaa (Authentication ,Authorization And Accounting).

## WEBSITE PLANNING & HOSTING

Introduction, Web Page Lay-Outing, Where To Host Site, Maintenance Of Site, Registration Of Site On Search Engines And Indexes, Introduction To File Transfer Protocol, Public Domain Software, Types Of Ftp Servers (Including Anonymous), FtpClients Common Command. Telnet Protocol, Server Domain, Telnet Client, Terminal Emulation. Usenet And Internet Relay Chat

# **TEXT BOOKS**

- 1. Internet & Intranet Engineering,- Daniel Minoli, TMH.
- 2 .Alexis Leon and Mathews Leon Internet for Every One, Tech World.

# REFERENCES

1. Eric Ladd, Jim O'Donnel -- "Using HTML 4, XML and JAVA"-Prentice Hall of India-1999.

2. "Beginning Java Script "- Paul Wilton - SPD Publications-2001

# **Course Designers:**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Dr. R. Jaichandran	Associate Professor	CSE	rjaichandran@avit.ac.in

170	SPI06		LEA	ARNIN	G IT F	SSEN	TIALS	BYD	OING		Catego	ry L	Т	P C	redit
170	51 100				0111				onto		PI	3	0	0	3
PREA	MBLE														
progra techno	mming ologies f	, Datal or the r	base an ight ty	d web	Techno	ology a	mongst	other	related	topics. 7	This cou		to the	lective in basic too ions	
	REQUIS														
COUI	RSE OF	BJECT	IVES												
1	To lea	arn abo	ut the e	essentia	ls of In	formati	on Tec	hnolog	у						
2	To ge	t an ide	a abou	t the sci	ripting	langua	ges.								
3	To ge	t an ide	a abou	t the int	ternet p	rotocol	S								
COUI	RSE OU	JTCON	AES												
On the	succes	sful coi	npletio	n of the	e course	e, stude	nts wil	l be abl	e to						
CO1 (	Jnderst	and the	e netw	orking	conce	pt inter	met pr	otocols	, netw	ork rout	ing 1	Understa	nd		
CO2. 1	Underst	and the	fundar	nentals	of web	applic	ations	and its	modelir	ng	1	Understa	nd		
	Unders ations	tand ar	nd lear	n the so	cripting	g langı	lages v	with de	sign of	f web	1	Understa	nd		
CO4. 4	Analyze	the pro	ocess o	f mobil	e comn	nunicat	ion and	l netwo	rk tech	nologies	1	Analyze			
	Build si ations.	mple in	teractiv	ve appli	cations	, datab	ase app	olication	ns and r	nultimed	lia	Analyze			
MAPI	PING V	VITH I	PROG	RAMM	IE OU	ГСОМ	ES AN	D PRO	OGRAN	MME SI	PECIFI	C OUTC	OMES	;	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	S	М	М	М	_	_	_	_	_	-	_	М	S	М	M
CO2	S	М	М	М	-	-	-	-	-	_	-	М	S	_	M
CO3	S	М	М	М	-	_	_	_	_		_	M	S	M	M
CO4	M	M	М	M	М	-	-	-	_	_	-	M	S S	M	-
CO5	M	M	M	M	S	_	_	_	_		_	M	-	M	M
~ ~		Mediur			~										

#### **Fundamentals of Computer architecture**

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

#### **Operating system**

Introduction – memory management schemes Process management Scheduling – threads. Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

#### **RDBMS**

Data processing – the database technology – data models-ER modeling concept –notations – Extended ER features -Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

#### **Objected oriented concepts**

Object oriented programming -UML Class Diagrams- relationship - Inheritance - Abstract classes - polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool - Application of OOC using Alice tool.

#### **Client server computing**

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

## REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C languagePHI,1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co.,1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept,2nd ed. McGraw-Hill International editions,1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming– An evolutionary approach, Addison – Wesley,1991

#### **Course Designers:**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.K.Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

17CSPI07	ESSENTIALS OF INFORMATION TECHNOLOGY	Category	L	Т	Р	Credit
		PI	3	0	0	3
DDDIAM						

This course aims to provide the fundamental concepts of Computer operations like hardware and software installation, and emphasizing principles application packages. This course aims at facilitating the student to understand the various concepts and functionalities of Database Management Systems, the method and model to store data and how to manipulate them through query languages, the effective designing of relational database and how the system manages the concurrent usage of data in multi user environment.

# **PREREQUISITE** – NIL

COU	RSE OBJECTIVES	
1	To provide basic knowledge of hardware and software components of com	puters.
2	To study Problem solving Techniques and program development cycle.	
3	Design and test simple programs in C language	
4	Document artifacts using common quality standards	
5	Design simple data store using RDBMS concepts and implement	
COU	RSE OUTCOMES	
On the	e successful completion of the course, students will be able to	
CO1 I	Basic knowledge on hardware and software terminologies.	Understand
	Apply the knowledge of mathematics, science and computing in the core nation technologies	Apply
	Understand Program Devolvement Cycle and apply various Problem ag Techniques	Apply
CO4.	Develop the function programs with all the concepts in c	Analyze
	Build and manipulate relational database using Structured Query Language lational languages	Analyze
MAP	PING WITH PROGRAMME OUTCOMES AND PROGRAMME SPEC	CIFIC OUTCOMES
COC	DOI DO2 DO2 DO4 DO5 DO6 DO7 DO9 DO0 DO10 DO1	

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	М	-	-	-	-	-	-	-	S	М	М
CO2	S	М	М	М	М	-	-	-	-	-	-	-	S	М	М
CO3	S	М	М	М	М	-	-	-	-	-	-	-	S	М	М
CO4	S	М	М	М	М	-	-	-	-	-	-	-	S	М	М
CO5	S	М	М	М	М	-	-	-	-	-	-	-	S	М	М
S- Strong; M-Medium; L-Low															

### Introduction

Basics of computer systems - Various hardware components - Data storage and various Memory units - Central Processing Unit - Execution cycle - Introduce to software and its classifications. Operating system concepts– Introduction – Memory management - Process management - Intercrosses Communication – Deadlocks - File management -Device management.

### **Problem Solving Techniques**

Introduction to problem solving - Computational problem and it's classification - Logic and its types - Introduction to algorithms - Implementation of algorithms using flowchart - Flowcharts implementation through RAPTOR tool - Searching and sorting algorithms - Introduction and classification to Data Structures - Basic Data Structures - Advanced Data Structures

### **Programming Basics**

Introduction to Programming Paradigms and Pseudo Code - Basic programming concepts - Program Life Cycle -Control Structures - Introduction and Demonstration of 1-D Array and 2-D Array - Searching and Sorting techniques - Demonstration Concept of memory references in arrays –Strings - Compiler Concepts - Code Optimization techniques. Structured Programming – Functions – Structures - File Handling - Introduction to Software Development Life Cycle - Industry Coding Standards and Best Practices - Testing and Debugging - Code Review

### **Project Preparation**

Project Specification - Preparation of High level design and Detailed design document, Unit Test Plan and Integrated Test Plan - Coding and Unit Testing activities - Integration Testing.

#### RDBMS

 $Data \ processing - the \ database \ technology - data \ models-ER \ modeling \ concept - notations - Extended \ ER \ features-Logical \ database \ design - normalization - SQL - DDL \ statements - DML \ statements - DCL \ statements - Joins - Sub \ queries - Views-Database \ design \ Issues.$ 

#### TEXT BOOKS

1. Information Technology Planning, Blokdyk Gerardus, Pearson 3rd Edition.

#### REFERENCES

- 1. "Computer Organization and Architecture" William Stallings, Pearson 8th Edition
- 2. "Database System Concepts"- Abraham Silberschatz, Hendry F Korth Indian 6thEdition.
- 3. "Computing Fundamentals and C Programming" Paperback 1 Jul 2017 by E Balagurusamy(Author)
- 4. "How to solve it by computer "- R G Dromey, Pearson Edition2006.
- 5. "Software testing "Principle and Practices Desikan Srinivasan, Gopalaswamy Ramesh, Pearson Edition 2005.

### **Course Designers:**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr. K.Karthik	Assistant Professor	CSE	karthik@avit.ac.in

17CSPI08	INTRODUCTION TO MAIN FRAMES	Category	L	Т	Р	Credit
		PI	3	0	0	3

The mainframe hardware and z/OS operating system grew up together and are highly complementary for reliability, availability, serviceability, scalability, security, and performance. The operating system taught in this course is z/OS, a widely used mainframe operating system. z/OS is known for its ability to serve thousands of users concurrently and for processing very large workloads in a secure, reliable, and expedient manner.

# **PREREQUISITE : NIL**

# **COURSE OBJECTIVES**

1	To get an idea about the mainframe hardware
2	To get an idea about z/OS
3	To learn about JCL
COUR	RE OUTCOMES

#### COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1 L Termin	earn the	e Conce	ept of C	Comput	er Arch	nitectur	e ,Mair	Iframes	OS and	d		Understa	nd			
	Learn th	e Conc	cept of	virtual s	storage	and its	use in	z/OS				Understa	nd			
CO3 U	Indersta	ind Job	Contro	ol langu	age- V	arious s	stateme	nts in J	CL- JC	L procee	lures	Understa	nd and A	pply		
	CO4. Build and manipulate relational database using Structured Query Language and relational languages												Apply			
	CO5. Analyze various forms of data representation and structures supported by the COBOL language Apply													ze		
MAPH	PING W	VITH I	PROG	RAMM	IE OU	ГСОМ	ES AN	D PRO	OGRA	MME SI	PECIF	C OUTC	OMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	М	М	М	-	-	-	-	-	-	-	-	S	М	М	
CO2	S	М	М	М	-	-	-	-	-	-	-	-	S	-	М	
CO3	S	L	М	М	-	-	-	-	-	-	-	-	S	М	-	
<b>CO4</b>	S	М	М	М	-	-	-	-	-	-	-	-	S	М	М	
CO5	S	М	М	М	-	-	-	-	-	-	-	-	S	М	-	
S-Stro	ong; M-I	Mediur	n; L-Lo	OW	1	1	1	1	1	1		_I	1	1	L	

# UNIT -I EVOLUTION OF MAINFRAME HARDWARE

Overview of Computer Architecture - Classification of Computers - micro, mini, mainframes and super computer - Mainframe computer - key features - benefits - Evolution of Mainframes - Different hardware systems. Mainframes OS and Terminology: Operating systems on mainframes, Batch processing vs. online processing - mainframe operating system. - evolution - concepts of Address space, Buffer management - Virtual storage - paging - swapping – Dataset management inmainframes.

# UNIT-II Z/OS AND ITS FEATURES

Z-operating system (Z/OS) - Virtual storage - Paging process - storage Managers - Program execution modes - Address space - Multiple virtual system(MVS), MVS address space, Z/OS address space - Dataset - sequential and partial dataset - Direct access storage device(DASD) -Access methods - Record formats - Introduction to virtual storage access methods(VSAM) - Catalog –VTOC.

# UNIT-III INTRODUCTION TO JCL

Introduction to Job Control language - Job processing – structure of JCL statements - Various statements in JCL - JOB statement - DD statement - JCL procedures and IBM utilityprograms.

# UNIT-IV COBOL PROGRAMMING

Introduction – History, evolution and Features, COBOL program Structure, steps in executing COBOL. Language Fundamentals – Divisions, sections, paragraphs, sections, sentences and statements, character set, literals, words, figurative constants, rules for forming user defined words, COBOL coding sheet.. Data division – Data names, level numbers, PIC and VALUE clause, REDEIFNES, RENAMES and USAGE clause. Procedure Division – Input / Output verbs, INITIALIZE verb, data movement verbs, arithmetic verbs, sequence control verbs.

# **UNIT-V OVERVIEW OF DB2**

Introduction to DB2 – System Service component, Database Service component, Locking Service component, Distributed Data Facility Services component, Stored Procedure component, catalogs and optimizer. DB2 Objects and Data Types - DB2 Objects Hierarchy, Storage groups, Database, Table space, Table, Index, Clustered index, Synonyms and aliases, Views, Data Types. DB2 SQL programming – Types of SQL statements, DCL, DDL, DML, SPUFI utility. Embedded SQL programming – Host variable, DECLGEN utility, SQLCA, single/multiple row manipulation, cursors, and scrollablecursors.

# TEXT BOOKS

- 1. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley, 1992.
- 2. Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech, 2002.
- 3. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.

# REFERENCES

- 1. MVS JCL, Doug Lowe, Mike Murach and Associates.
- 2. AS/400 Architecture and Application The Database Machine by Jill T. Lawrence (SPDPublications)
- 3. Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech, 2002.
- 4.z/OS V1R4.0 MVS JCL Reference found onlineat

http://www-.ibm.com/support/docview.wss?uid=pub1sa22759706

5.z/OS V1R1.0 MVS JCL Reference found online

athttp://publibz.boulder.ibm.com/cgibin/bookmgr_OS390/BOOKS/iea2b600/CCONTENT

### S

- 6. COBOL Language Reference, Ver 3, Release 2, IBMRedbook.
- 7. COBOL Programming Guide, Ver 3, Release 2, IBMRedbook.
- 8. Complete CL The Definitive Control Language Programming Guide by Ted Holt and Ernie Malaga (SPD Publication).
- 9. Nancy Stern & Robert A Stern, "Structured Cobol Programming", John Wiley & Sons, New York, 1973.
- 10. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.
- 11. Newcomer and Lawrence, Programming with Structured COBOL, McGraw Hill Books, New York, 1973.
- 12. Craig S Mullins, DB2 Developer's Guide, Sams Publishing, 1992.
- 13. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley, 1992.
- 14. C J Date & Colin J White, A Guide to DB2, AddisonWesley.

### **Course Designers:**

S.No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in
2.	Mr. S. Muthuselvan	Assistant Professor (G-II)	CSE	muthuselvan@avit.ac.in

### 17CSPI09

# MOBILE APPLICATION DEVELOPMENT

Category	L	Т	Р	Credit
PI	3	0	0	3

# PREAMBLE

In this modern era almost every hands has a handheld devices. Each handheld device have the computing capability to meet the half the needs of user such as banking, browsing, education and emergency etc. It is a must for a computer engineer to have some basic knowledge about the handheld devices platform and its supporting software development. This course will give adequate knowledge in developing a mobile applications for different such as Android, iOS, Windows.

PRE REQUISITE – NIL															
COUR	RSE OB	JECT	IVES												
1.	Under	stand s	system	require	ments f	or mob	ile app	lication	S						
2.	Gener	ate sui	table de	esign us	sing spe	ecific m	nobile d	levelop	ment fr	ameworl	KS				
3.	Generate mobile application design														
4.	Imple	ment th	ne desig	gn using	g specif	ïc mob	ile deve	elopme	nt fram	eworks					
5.	Deplo	y the n	nobile a	applicat	tions in	market	place f	or distr	ibution						
COUR	RSE OU	TCON	MES												
On the	succes	sful con	mpletio	n of the	e course	e, stude	nts will	l be abl	e to						
CO1. 1	Expose	to tech	nology	and bu	siness t	rends i	mpacti	ng mob	ile appl	ications		Understa	nd		
CO2.U	Jndersta	and ente	erprise	scale re	equiren	ents of	mobile	e applic	ations			Understa	nd		
CO3. 1	- Familiarize in the Graphics used for Android application development Apply														
CO4. (	Compet	ent wit	h the cl	haracter	rization	and ar	chitectu	ure of n	nobile a	pplication	ons	Apply			
	-		-	-		loping	mobile	applica	tions u	sing one		Analyze			
~ ~	ation de	-				FCOM	TS AN			MME SI	DECIEI		OMES		
-	1	1		1			r	1	r				1	DGOO	DCO2
COS	PO1 S	<b>PO2</b> M	PO3 M	<b>PO4</b> M	PO5 M	PO6	PO7	<b>PO8</b> M	PO9	PO10	PO11	<b>PO12</b> M	PSO1	PSO2 M	PSO3 M
CO1	3	IVI	IVI	IVI	IVI	-	-		-	-	-	IVI		IVI	IVI
CO2	S         M         M         M         -         -         M         -         -         M         S         M         M														
CO3	S         M         L         M         L         -         M         -         -         L         S         M         M														
CO4	S	М	М	М	М	-	-	М	-	-	-	М	S	М	М
CO5	S	М	М	М	L	-	-	М	-	-	-	L	S	М	М
S- Stro	ong; M-I	Mediur	n; L-Lo	OW	I		ı	ı	ı			- <b>I</b>	ı	<u>.                                    </u>	<u>.                                    </u>

# SYLLABUS UNIT I INTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications – Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications

# UNIT II BASIC DESIGN

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

# UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

# UNIT IV TECHNOLOGY I – ANDROID

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi –Integration with social mediaapplications.

# UNIT V TECHNOLOGY II -IOS

Introduction to Objective C –iOS features –UI implementation –Touch frameworks –Data persistence using Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

# TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

# REFERENCES

Course Designers:

1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.

2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.

3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

Course	Course Designers:											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1.	Dr. K. Sasikala	Associate Professor	CSE	sasikalak@vmkvec.edu.in								
2.	Mrs. S. Leelavathy	Assistant Professor (G-II)	CSE	leelavathy@avit.edu.in								

17CHBS01	Environmental Sciences (Common to All Branches)	Category	L	Т	Р	Credit
17CHBS01	(Common to An Drancics)	МС	-	-	-	0

Environmental science and Engineering is an interdisciplinary field that integrates physical, chemical, biological, information sciences and provides the basic knowledge of structure and function of ecosystem and better understanding of natural resources, biodiversity and their conservation practices. The course helps to create a concern for our environment that will generate pro-environmental action, including activities we can do in our daily life to protectit.Furthermore, it deals the social issues and ethics to develop quality engineer in our country.

PREREQUISITE: NIL															
COU	RSE O	BJECT	TIVES	5											
1.	Apply	ing Sc	eience	and Er	ngineer	ing kno	wledge	to prot	tect env	ironmer	ıt				
2.	To pr	ovide o	compr	ehensiv	ve insig	ght in na	tural re	esource	s and pi	otect na	tural res	sources			
3.	To create awareness on the various pollutions and their impact.														
4.	To educate the ways and means to manage natural calamities														
5.	To im	part fu	ındam	ental k	nowled	lge on h	uman v	welfare	measur	es					
COU	RSE O	UTCO	MES												
On	he succ	cessful	compl	etion o	f the co	urse, stu	idents v	vill be a	ble to						
	On the successful completion of the course, students will be able to <b>D1.</b> Comprehend the impact of engineering solutions in a global and ocietal context														
	<b>22.</b> Illustrate the contemporary issues that results in environmental degradation and Understand ould attempt to provide solutions to overcome those problems														
					•	stem an		•					Apply		
<b>CO4.</b>	Practic	e to im	prove	the en	vironm	ent and	sustair	nability					Apply		
						ervation							Analyze		
CO6.I	Estimat	e the in	mport	ant role	e of IT	in healt	hy envi	ronmei	nt for fu	ture ger	erations	<b>S</b> .	Analyze		
MAP	PING V	WITH	PRO	GRAM	ME O	UTCON	IES AN	ND PRO	OGRAN	AME SF	PECIFI	COUTC	OMES		
cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	-	-	-	М	S	S	М	М	-	S	М	-	М
CO2	S	-	-	-	I	S	S	S	-	-	-	S	-	М	Μ
CO3	S	-	I	I	I	Μ	S	М	L	-	-	S	-	-	Μ
CO4	S	-	-	-	-	М	S	S	М	М	-	S	М	-	Μ
CO5	S	-	-	-	-	М	S	S	М	М	-	S	М	-	Μ
CO6															
S- Str	ong; M	-Mediu	ım; L-1	Low											

## ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development.

### **ECOSYSTEMS AND BIO – DIVERSITY**

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

#### **ENVIRONMENTAL POLLUTION**

Pollution-Definition,man made impacts and control measures of air, water and land pollution Water quality standards &characterization- Importance of sanitation - Nuclear hazards- Hazardous waste management: Solid waste, waste water and biomedical waste- Prevention of pollution and role of individual-Disastersmanagement:Floods,earthquake,cycloneand.

land slides - Clean technology options.

### SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people - Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board.

### HUMAN POPULATION AND ENVIRONMENT

Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights – Value education - Women and child welfare, Role of information technology in environment and human health.

#### **TEXT BOOKS:**

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

# **REFERENCES:**

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. TrivediR.K."HandbookofEnvironmentalLaws",Rules,Guidelines,Compliancesand tandards Vol I & II, Enviromedia.
- 4. Dr.J.Meenambal,EnvironmentalScienceandEngineering,MJPPublication,Chennai Gilbert M. Masters.
- **5.** Introduction to Environmental Engineering and Science, Pearson Education Pvt Ltd., II Edition, ISBN 81-297-0277-0,2004.

S.No	Name of the	Designation	Department	Email ID
	Faculty			
1.	Dr. V. Anbazhagan	Professor	Chemistry / VMKVEC	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant Professor	Chemistry / VMKVEC	asmgill80@gmail.com
3.	Dr. R. Nagalakshmi	Professor	Chemistry / AVIT	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate Professor	Chemistry / AVIT	sanghamitra.chemistry@avit.ac.in

15	MDUG		ES	SENC	E OF	INDIA	N KNC	WLE	DGE	Catego	ry I	L J	Г Р	Cr	edit
1/	MBHS	11				TRAD	OITION	N		MC					0
	AMBLI		_												
			•	•	•	ples of t onnectin	•	•		ing and	inferenc	ing. Sust	ainability	is at the	core of
PREI	REQUI	SITE:	NIL												
COU	RSE O	BJEC	<b>FIVES</b>	5											
1.	To fac	cilitate	the stu	idents v	with the	concept	ts of Inc	dian trae	ditional	knowled	lge.				
2.	To un	derstar	nd the	Importa	ance of	roots of	knowle	edge sys	stem						
COU	RSE O	UTCO	MES												
On	the suce	cessful	compl	letion o	f the co	urse, stu	idents v	vill be a	ble to						
CO1.	Unders	stand th	e conc	cept of '	Traditio	onal kno	wledge	and its	importa	nce			Understa	nd	
CO2.	Know	the nee	d and	importa	ance of	protecti	ng tradi	tional k	nowledg	ge.			Understa	nd	
CO3.	Know t	he vari	ous en	actmen	ts relat	ed to the	protec	tion of	tradition	al know	ledge		Understa	nd	
CO4.	Unders	tand th	e conc	epts of	Intellec	ctual pro	perty to	o protec	t the trac	ditional	knowled	ge	Understa	nd	
MAP	PING	WITH	PRO	GRAM	ME O	UTCON	IES AN	ND PRO	OGRAN	AME SF	PECIFI	COUTC	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	S	М	М	-	-	-	-	-	-	М
CO2	-	-	-	-	-	S	М	М	-	-	-	-	-	-	М
CO3	-	-	-	-	-	S	М	М	-	-	-	-	-	-	М
CO4	-	-	-	-	-	S	Μ	М	-	-	-	-	-	-	М
S- Str	ong; M	-Mediu	ım; L-1	Low											

17MD11911	MBHS11 INDIAN CONSTITUTION		L	Т	Р	Credit
1/1000511	INDIAN CONSTITUTION	MC	-	-	-	0
e	cracy of the world. It is need of the time that its successfully working is analyzed in a de tution of India.	-	•			5

**INTRODUCTION TO TRADITIONAL KNOWLEDGE:** Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge

**PROTECTION OF TRADITIONAL KNOWLEDGE:** The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

**LEGAL FRAME WORK AND TK:** A: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001. (PPVFR Act); B: The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016. Geographical indicators act 2003.

**TRADITIONAL KNOWLEDGE AND INTELLECTUAL PROPERTY:** Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.

**TRADITIONAL KNOWLEDGE IN DIFFERENT SECTORS:** Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK. 139.

## **TEXT BOOKS:**

- 1. Traditional Knowledge System in India, by Amit Jha, 2009.
- 2. Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan, 2012.

#### **REFERENCES:**

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor, Michel Danino.
- 3. https://www.youtube.com/watch?v=LZP1StpYEPM
- 4. http://nptel.ac.in/courses/121106003

S.N	o Name of the	Designation	Department	Email ID							
	Faculty	8									
1.	M. Manickam	Associate Professor	MBA / VMKVEC	manickam@vmkvec.edu.in							
2.	C. M. Muthukrishna Assistant Professor MBA / AVIT		muthukrishna.mba@avit.ac.in								
PRER	PREREQUISITE: NIL										
COUI	OURSE OBJECTIVES										
1.	Understand the need for co	nstitution.									
2.	Appreciate the fundamenta	duties and rights of	the citizens of India								
3.	Explain the role and amend	ments of constitution	n in a democratic society.								
4.	Describe the directive principles of state policy and their significance.										
5.	List the key features of the constitution, union government and state government.										
COURSE OUTCOMES											

On	On the successful completion of the course, students will be able to														
		awarer	ness at	out the	constit	utional	values a	and obje	ectives v	vritten ir	the Ind	ian	Understa	nd	
consti	constitution.														
CO2.	CO2. List fundamental rights and fundamental duties of Indian citizens. Understand														
	<b>CO3.</b> Identify the division of legislative, executive and financial powers between the union and Understand state governments														
	CO4. Understand the working of Indian democracy ,its institutions and processes at the Understand local, state and union levels														
	CO5. Explain the functions and responsibilities of election commission of india and union Understand Understand														
MAP	PING	WITH	PRO	GRAM	ME O	UTCON	IES AN	ND PRO	OGRAN	AME SF	PECIFI(	COUTO	COMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	Μ	-	М	-	М	-	-	-	-
CO2	-	I	-	-	-	-	М	-	М	-	М	-	-	-	-
CO3	CO3 M - M - M														
CO4	-	-	-	-	-	-	М	-	Μ	-	М	-	-	-	-
CO5	CO5 M - M - M														
S-Str	S- Strong; M-Medium; L-Low														

# SYLLABUS HISTORY OF MAKING OF THE INDIAN CONSTITUTION

History of Making of the Indian Constitution: Introduction to the constitution of India, the making of the constitution and salient features of the constitution.

# PHILOSOPHY OF THE INDIAN CONSTITUTION

Philosophy of the Indian Constitution: Preamble Salient Features, Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties, Amendment of the constitutional powers and procedures.

# UNION GOVERNMENT

Union Government: Union Government, Union Legislature (Parliament), Lok Sabha and Rajya Sabha (with powers and functions), president of India (with powers and functions), Prime minister of India (With powers and functions), Union judiciary (Supreme court), Jurisdiction of the supreme court.

## STATE GOVERNMENT

State Government: State Government, State legislature (Legislative Assembly/ Vidhan Sabha, Legislative council/ Vidhan parishad), powers and functions of the state legislature, State executive, Governor of the state (with powers and functions), The chief Minister of the state (with powers and functions), State Judiciary (High courts)

## **ELECTION COMMISSION**

Election Commission: Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women.

## **TEXT BOOKS:**

**1**. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice – Hall of India Pvt. Ltd. New Delhi.

2. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

- 3. The constitution of India, P.M.Bakshi, Universal Law Publishing Co.,
- 4. The Constitution of India, 1950 (Bare Act), Government Publication.

5. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

## **REFERENCES:**

- 1. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- 2. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.
- 3. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- **4.** nptel.ac.in/courses/109104074/8
- 5. nptel.ac.in/courses/109104045/
- 6. nptel.ac.in/courses/101104065/ 4.
- 7. www.hss.iitb.ac.in/en/lecture-details
- 8. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

S.No	Name of the FacultyDesignation		Department	Email ID
1.	M. Manickam	Associate Professor	MBA / VMKVEC	manickam@vmkvec.edu.in
2.	C. M. Muthukrishna	Assistant Professor	MBA / AVIT	muthukrishna.mba@avit.ac.in